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GEOLOGY, EVOLUTION

Chemical weathering shapes continents
Continental crust rises higher than oceanic crust because it is
less dense: It is rich in Si and poor in Mg. However, basalt,
which is derived from magma, is denser and has a higher ratio
of Mg to Si than the rock that makes up mature continental
crust. Cin-Ty Lee et al. argue that chemical weathering alters
the composition of continental crust as it ages and helps give it
its more buoyant character. Both chemical weathering and
‘‘delamination’’ of Mg-rich lower crust, which occurs as it peels
off and reenters the mantle, have been proposed as mecha-
nisms that remove Mg from continents. However, quantifying
the relative strength of chemical weathering versus delamina-
tion has long been a challenge. The problem is essentially that
two equations arise to explain the removal of Mg, but the equa-
tions contain three unknowns and therefore cannot be solved.
The authors observe that the weathering of Li and Mg is cou-
pled, which allows the system to be solved. The authors report
that chemical weathering accounts for a loss of 20% of the
original basalt Mg compared with a 40% loss by other routes.
From this perspective, it seems possible that life, by altering
crustal chemistry via weathering, can affect the evolution of
continents. — K.M.

‘‘Regulating continent growth and composition by chemical weath-
ering’’ by Cin-Ty Aeolus Lee, Douglas M. Morton, Mark G. Little,
Ronald Kistler, Ulyana N. Horodyskyj, William P. Leeman, and
Arnaud Agranier (see pages 4981–4986)

BIOPHYSICS

Single amyloid �-peptide examined
The aggregation of misfolded amyloid �-peptide protein into
plaques is thought to be a primary cause of Alzheimer’s dis-
ease. Wolfgang Hoyer et al. report on the detailed structure
of the �-hairpin in a single misfolded Alzheimer’s amyloid
�-peptide. The authors bound the 40-aa isoform of the amyloid
�-peptide to an engineered affinity protein and examined it
with nuclear magnetic resonance spectroscopy. They found that
amino acids 17–36 form the �-hairpin. The isolated hairpin

strongly resembled fibrillar
amyloid �-peptide. The au-
thors found that the affinity
protein stabilizes the �-sheet
by extending it intermolecu-
larly and by burying both of
the mostly nonpolar faces of
the amyloid �-hairpin within a
large hydrophobic tunnel-like
cavity. They show that the af-
finity protein inhibits the for-
mation of fibrillar amyloid
�-peptide. This conformation
is a step toward identifying
the oligomerization and fibril-
lation that leads to Alzhei-
mer’s disease, according to the authors. — P.D.

‘‘Stabilization of a �-hairpin in monomeric Alzheimer’s amyloid-�
peptide inhibits amyloid formation’’ by Wolfgang Hoyer, Caroline
Grönwall, Andreas Jonsson, Stefan Ståhl, and Torleif Härd (see
pages 5099–5104)

CELL BIOLOGY, ENGINEERING

Faster path to drug cocktails
A finely tuned drug cocktail is often more effective than a sin-
gle drug. Finding the appropriate drug combinations in the vast
realm of possibilities is much
faster using a feedback control
technique developed by Pak
Kin Wong et al. In addition to
the challenge posed by testing
all possible drug combinations
at varying doses is the need to
consider their action in a bio-
logical system. To optimize
combinations without requir-
ing detailed information about
individual biological pathways
and interactions, the authors
developed an experimental
closed-loop control scheme

The �-hairpin of amyloid-� pep-

tide (red), bound to an affinity

protein.

Closed-loop feedback control

scheme.
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integrated with a search algorithm to identify the cocktail based
on the response of the biological system as a whole. The algo-
rithm develops its next iteration only after feedback, in this case
a series of discernible phenotypic responses. The authors used the
closed-loop control scheme to reduce infection of cultured cells
with a mammalian virus. This approach rapidly identified a combi-
nation of drugs that inhibited almost 100% of viral activity, with
lower doses of each than would be needed alone. — T.H.D.

‘‘Closed-loop control of cellular functions using combinatory drugs
guided by a stochastic search algorithm’’ by Pak Kin Wong, Fuqu Yu,
Arash Shahangian, Genhong Cheng, Ren Sun, and Chih-Ming Ho
(see pages 5105–5110)

GENETICS

MicroRNA’s influence on leukemia
MicroRNAs have been predicted to influence diseases by regu-
lating hundreds of gene transcripts at a time, but few such data
sets have been identified. George Calin et al. present evidence
that miR-15a and miR-16-1, which are known to suppress tu-
mors through the BCL2 oncogene, activate and inactivate many
genes that are implicated in human leukemia. The authors in-

serted the miRNAs into the
genomes of tumor cells and
injected them into nude mice.
The miRNA clusters com-
pletely suppressed tumor
growth in three of five mice
and shrunk the tumors in
other mice. The miRNAs also

up-regulated 265 genes and down-regulated 3,307, meaning that
�14% of the estimated number of human genes were affected.
Among the many genes that were down-regulated, a signifi-
cant number had AU-rich elements. An analysis of the down-
regulated transcripts identified many genes that are activated in
cancer by directly or indirectly affecting apoptosis and the cell
cycle. The authors say that identifying the suite of silenced
genes could help develop new therapies for leukemia. — P.D.

‘‘MiR-15a and miR-16-1 cluster functions in human leukemia’’
by George A. Calin, Amelia Cimmino, Muller Fabbri, Manuela
Ferracin, Sylwia E. Wojcik, Masayoshi Shimizu, Cristian Taccioli,
Nicola Zanesi, Ramiro Garzon, Rami I. Aqeilan, Hansjuerg Alder,
Stefano Volinia, Laura Rassenti, Xiuping Liu, Chang-gong Liu,
Thomas J. Kipps, Massimo Negrini, and Carlo M. Croce (see pages
5166–5171)

IMMUNOLOGY

Designer T cells prevent autoimmune
disease in mice
Multiple sclerosis (MS) is an autoimmune disease that occurs
when the body’s T cells attack the fatty myelin sheath that insu-
lates nerve fibers in the brain, spinal cord, and optic nerve.
Without this protective layer, nerves are unable to send electri-
cal signals and scars are formed. Joel Stern et al. developed reg-
ulatory T cell lines that suppress multiple autoimmune diseases
in mice, including experimental autoimmune encephalomyelitis
(EAE), the mouse model of MS. To create these MS-fighting T
cells, Stern et al. immunized SJL/J mice with amino acid copol-
ymers, then harvested T lymphocytes from the spleen and
lymph nodes and used the lymphocytes to create cell lines.
These new T cell lines secrete high levels of IL-10 and IL-13-
immune chemicals that play an important role in immunosup-
pression. However, unlike traditional T cells, these lines only
produce small amounts of IL-4 and virtually no TGF-�, IL-17,
IL-6, IL-2, IFN-�, or TNF�. When EAE was triggered in genet-
ically susceptible mice, the animals developed disease at day 17
or 18. However, animals that received the IL-10-secreting T
cells failed to develop EAE. The T cells also prevented the de-
velopment of two other autoimmune diseases that could be in-
duced in the same strain of mice. — B.T.

‘‘Amino acid copolymer-specific IL-10-secreting regulatory T cells
that ameliorate autoimmune diseases in mice’’ by Joel N. H. Stern,
Derin B. Keskin, Hong Zhang, HuiJuan Lv, Zenichiro Kato, and Jack
L. Strominger (see pages 5172–5176)

Comparison of tumor growth in

nude mice.
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A mixture of drugs is often more effective than using a single
effector. However, it is extremely challenging to identify potent
drug combinations by trial and error because of the large number
of possible combinations and the inherent complexity of the
underlying biological network. With a closed-loop optimization
modality, we experimentally demonstrate effective searching for
potent drug combinations for controlling cellular functions
through a large parametric space. Only tens of iterations out of one
hundred thousand possible trials were needed to determine a
potent combination of drugs for inhibiting vesicular stomatitis
virus infection of NIH 3T3 fibroblasts. In addition, the drug com-
bination reduced the required dosage by �10-fold compared with
individual drugs. In another example, a potent mixture was iden-
tified in thirty iterations out of a possible million combinations of
six cytokines that regulate the activity of nuclear factor kappa B in
293T cells. The closed-loop optimization approach possesses the
potential of being an effective approach for manipulating a wide
class of biological systems.

combinatory drug therapy � drug cocktail � drug resistance �
feedback control � viral infection

D iseases arise from altered cellular functions and activities.
Modifying cellular activities by a combination of agonists

can lead to an effective strategy for disease therapeutics. A
mixture of drugs, in many cases, is more effective than using a
single stimulus (1–5). However, the combination of various
possible concentrations of a set of agonists creates a large testing
parametric space. As such, identifying the optimum combination
of multiple drugs to control a complex biological system presents
a major challenge (6, 7). Here, we experimentally demonstrate
that a closed-loop optimization scheme can serve as an alterna-
tive approach to trial and error, which needs to test a large
number of all of the possible combinations. The approach
suggested in this work effectively searches for potent drug
combinations that manipulate the cellular network toward a
therapeutic goal.

Cellular functions and activities are regulated by complex
networks of signaling and regulatory pathways. The current
approach aims to circumvent the need for detailed information
of biological signaling and regulatory networks. To experimen-
tally implement the closed-loop optimization approach for
searching for a potent drug mixture, combinations of cytokines
and drugs are applied to stimulate the system of interest.
Biomarkers indicating the biological responses of interest, such
as viral activity, are then evaluated. Based on the biological
responses, a stochastic search algorithm chooses a new drug
mixture for the next test. Iteratively, the closed-loop control
scheme will drive the systems to desired phenotypic responses
(Fig. 1). We have demonstrated that only tens of iterations out
of a large number of possible combinations are needed. This

effort-saving approach actively manipulates the complex biolog-
ical systems as a whole, rather than analyzing the processes
through individual signaling pathways in a network.

The closed-loop control can serve as a generic approach in
devising multidrug therapies against wide classes of pathogens
and diseases. We have chosen two model systems to explore this
closed-loop optimization approach. In the first system, we con-
sider combinations of interferons (IFNs) and antiviral drugs for
inhibiting viral activity. Specifically, vesicular stomatitis virus
(VSV) infection of NIH 3T3 fibroblasts was used as the model
system. Although a combination of cytokines and drugs is known
to have a stronger antiviral activity than that from a single agent,
the complex interactions among the pathways and the large
parametric space constituted by the combinatorial drugs impose
a major challenge to identifying potent combinations. In the
second system, the activity of nuclear factor kappa B (NF-�B)
was chosen as the endpoint. The therapeutic effect of combina-
torial cytokines on human embryonic kidney 293T cells was
explored by searching for a potent combination of cytokines for
maximizing the activity of NF-�B. NF-�B regulates expression of
several genes that mediate the inflammatory responses and cell
proliferation, and is one of the major therapeutic targets for
chronic inflammatory disease and cancer (8, 9).

Results
Stochastic Search Algorithm. Stochastic search algorithms consti-
tute one of the most effective approaches to solving large-scale
combinatorial optimization problems of highly complex systems.
Stochastic search algorithms do not require training of data to
form a metamodel as in surrogate-based optimization (e.g.,
neural networks) (10). Therefore, only a small number of
experiments is typically required. Simulated annealing (11),
genetic algorithms (12), ant colony optimization (13), and Gur
Game (14) are some of the well established stochastic search
algorithms. These algorithms have been demonstrated in a
variety of applications, such as crystal structure predications
(11), routing in communication networks (13), and distributed
control in robotics (16, 17). These methods have also been
applied in computational biology (18) and protein-folding stud-
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ies (19). A major goal of the current study is to demonstrate the
stochastic search approach to find effective drug combinations
and to show that fast convergence, that is, a small number of
iterations, can be achieved.

Several stochastic search algorithms can potentially be applied
for regulating complex biological systems. In this work, we
selected the Gur Game to demonstrate the closed-loop optimi-
zation approach. Similar to other stochastic search algorithms,
the Gur Game does not require detailed information about the
biological system or how the system responds to manipulation of
input variables. The property of rapid convergence of the Gur
Game is invaluable for experimental manipulation of complex
biological systems with a large parametric space. Furthermore,
it is robust to random noise and nonlinear changes in the system
and the environment, which are commonly observed in a bio-
logical system. The Gur Game is based on biased random walks
of the input states (drug concentrations) collectively driving the
system (a cell) toward higher performance (the biological activ-
ity). The principle and implementation of the approach are
illustrated by a simplified example of searching antiviral drugs in
Fig. 2. More details of the Gur Game are discussed in the
supporting information (SI) Appendix.

Drug Cocktails for the Inhibition of Viral Activity. We have applied the
approach of closed-loop control to search for effective drug com-
binations for the inhibition of viral activity. VSV infection of NIH
3T3 fibroblasts was used as the model system in this investigation.
Several antiviral agents, including IFN�, IFN�, IFN�, puromycin,
and ribavirin and their combinations, were considered. The virus
was genetically engineered with a green fluorescent protein (GFP)
reporter for assessing the infection to the host cells (20). Cells were
cultured in 96-well plates to 60–80% confluence before the exper-
iment. VSV and drug combinations were applied to the cells at the
beginning of each iteration. The percentage of cells expressing GFP
were counted and fed into the Gur Game algorithm for deter-
mining the drug combination in the next iteration. A new batch
of cells was applied for each experiment. In our control exper-
iments, which were performed throughout this investigation,
�95% of the cells were infected and expressing GFP when
incubated with VSV at a multiplicity of infection of 1 (data not
shown). The morphology and doubling rate of the cells were
monitored throughout the experiment.

Closed-Loop Optimization of Potent Drug Cocktails. Four sets of
experiments were performed in this investigation. All five
agents, IFN�, IFN�, IFN�, puromycin, and ribavirin, were
considered for sets 2 to 4. For set 1, only IFN�, IFN�, and IFN�
were considered. For set 1 and set 2, six concentrations were
assigned for each agent whereas ten concentrations were con-
sidered in set 3 and set 4 (see SI Tables 2–5 in SI Appendix). Ten
concentrations each of five drugs led to one hundred thousand
(105) possible combinations. For set 1 and set 2, initial concen-
trations were zero for all agents and random initializations were
applied for set 3 and set 4. The antiviral activity, which is defined
as the percentage of cells not expressing GFP after incubation
with VSV for 13 h, was considered as the output biological
response for the optimization of the drug mixture. The percent-
age of cells expressing GFP was counted after incubation with
VSV and the drug mixture. According to this information, the
Gur Game determined the concentration of each drug for the
next iteration (see SI Appendix for details). These processes were
repeated during each iteration. In the experiment, set 2 rapidly

Fig. 1. Iterative cycle of the closed-loop optimization approach. At each
iteration, the cells are stimulated by a drug mixture from a predetermined set
of concentrations. The biological activity of interest is then evaluated. The
information is then fed into a stochastic search algorithm to determine the
drug combination for the next iteration. The cycle repeats iteratively until a
potent drug mixture is identified.

Fig. 2. The principle and procedure of the Gur Game are illustrated by
searching drugs with potent antiviral activities. The antiviral activity (AVA)
refers to the percentage of cells not being infected by the virus. (a) Assume the
drug concentrations, C1 and C2, have AVA of 40% and 80%, respectively (Top).
The procedure of performing the Gur Game for searching for the best con-
centration of the antiviral drug is shown in Middle and Bottom. In the
experiment, the AVA is first tested and expressed as a number between 0 (0%
AVA) and 1 (100% AVA). A random number between 0 and 1 is generated
after each test. If the AVA is smaller than the random number, then the
concentration will be switched in the next iteration. Otherwise, the drug
concentration will stay in the next iteration. In this example, the system has a
higher chance to stay at concentration C2 and to switch at concentration C1.
This asymmetric decision provides the ‘‘bias’’ of the search that leads the
concentration toward high AVA. The random number introduces ‘‘random-
ness’’ in the decision, because the concentration of the drug may switch even
at a high AVA. As a result, the search will not be trapped at a drug concen-
tration of a local maximal biological response. (b) A hypothetical experiment
is shown to illustrate the procedure. In this example, it can be proven math-
ematically that the chance of the system to choose the drug concentration C2
(AVA � 0.8) will be 0.75, whereas the probability of choosing drug concen-
tration C1 (AVA � 0.4) is 0.25 (see SI Appendix). (c) The procedure can be
extended to multiple drugs with different concentration levels each. An
example of two drugs with four concentrations each is shown. Each drug is
assigned with a set of discrete concentrations, represented by �2, �1, 1, and
2. After each experiment, a random number is generated for each drug. If the
random number is larger than AVA, the concentration will be switched.
Otherwise, the concentration will either stay or be switched in an attempt to
further improve the performance (see SI Appendix). The random number
introduces randomness in the search and the system collectively ‘‘biases’’
toward drug combinations with potent antiviral effects. Therefore, the pro-
cedure implements a ‘‘bias random walk’’ of drug concentrations to search for
potent drug cocktails.
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reached a potent combination that totally inhibited the GFP
expression and converged to the solution in less than ten
iterations (Fig. 3). This is likely because of the smaller set of
concentrations applied in set 2. Similarly, set 3 and set 4
converged to potent combinations that inhibited 100% of viral
activity after 12 and 14 iterations, respectively. The results of set
3 are listed in Table 1 to illustrate a typical iteration of the search
process. However, set 1 containing only three types of IFN
reached a maximum viral inhibition value of �0.63, that is, 63%
of the cells were not expressing GFP.

Cytokine Combinations for Activating NF-�B. To illustrate that the
closed-loop control scheme can be applied in different biological
systems, we searched for cytokine combinations that regulate
NF-�B activity in 293T cells. Six cytokines (TNF�, TNF�, IL-1�,
IL-1�, EGF, and BAFF) were considered for regulating the
NF-�B activity. The six stimuli, belonging to three families of
cytokines and growth factors, represent various possibilities of
pathway interactions: (i) effectors trigger different receptors and
mechanisms of a single-pathway component, and/or (ii) parallel
pathways are triggered simultaneously, each of which exerts
effects on a subsequent phenotype. Tumor necrosis factor (TNF)
and interleukin 1 (IL-1) are commonly used for stimulating the

NF-�B signal transduction pathway (21). Although TNF�,
TNF�, IL-1�, and IL-1� have similar functions, they are known
to have distinct roles in the cellular responses (22). Stimulation
with TNF� and IL-1� simultaneously was reported to activate
NF-�B (23) and other cellular functions (24) synergistically. The
effect of epidermal growth factor (EGF) on NF-�B signaling is
cell-type specific. For example, EGF has been reported to
up-regulate NF-�B activity in several cell lines that have high
levels of EGF receptor expression (25). However, EGF does not
enhance NF-�B activity in human microvascular endothelial
cells (26) and suppresses oxidant-induced NF-�B activity in
intestinal epithelial cells (27). BAFF (B cell-activating factor
belonging to the TNF family) has been shown to activate NF-�B
by a NF-�B essential modulator (NEMO) (IKK�) independent
pathway in maturing B cells (28). The possible interactions of the
six cytokines and the resulting combinatorial effects on NF-�B
in 293T cell are not fully understood. In this study, each agonist
was assigned 10 discrete concentrations: 0, 0.25, 0.5, 1, 2.5, 5, 10,
25, 50, or 100 ng/ml. The values spanned over three orders of
magnitude in concentration. The concentrations were selected
to maximize the range to be considered while maintaining
acceptable resolution in cytokine concentrations (i.e., the dif-
ference between concentrations). The lowest concentration that

Fig. 3. Optimizing antiviral drug combinations with the Gur Game. Inhibition of viral activity is defined as the percentage of uninfected cells (indicated by GFP
expression). (a) Four sets of experiments were performed to determine potent drug cocktails. Set 2 converges in �10 iterations and identifies a potent
combination that inhibits the viral activity completely. Set 3 and set 4 converge at the 12th and 14th iteration, respectively. (b) Bright field and fluorescence
micrographs of NIH 3T3 cells treated with VSV at 1 multiplicity of infection (moi) with and without the drug combination identified in set 2.

Table 1. List of drug concentrations and random numbers generated by Gur game in viral inhibition experiment of set 3 test

Iteration
IFN�,
pg/ml

Random
no. IFN�

IFN�,
ng/ml

Random
no. IFN�

IFN�,
ng/ml

Random
no. IFN�

Puromycin,
�g/ml

Random
no. Puromycin

Ribavirin,
�g/ml

Random
no. Ribavirin Reward

1 7.8 1 0.6 0.23 60 0.2 1.5 0.68 6 0.28 0.92
2 15.6 0.06 0.3 0.5 30 0.14 0.75 0.81 3 0.14 0.98
3 32.5 0.27 0.1 0.72 10 0.26 0.25 0.13 1 0.66 0.2
4 15.6 0.53 0.3 0.7 30 0.84 0.125 0.29 3 0.33 0.4
5 7.8 0.15 0.6 0.86 60 0.65 0 0.51 1 0.13 0.12
6 15.6 0.96 1.2 0.72 120 0.26 0.125 0.46 3 0.25 0.33
7 7.8 0.26 0.6 0.39 250 0.55 0.25 0.88 1 0 0.38
8 3.9 0.93 1.2 0.25 120 0.71 0.75 0.28 0.5 0.59 0.21
9 7.8 0.04 0.6 0.11 60 0.36 1.5 0.9 1 0.99 0.89

10 3.9 0.47 0.3 0.32 30 0.55 3 0.15 3 0.52 0.43
11 7.8 0.6 0.1 0.55 60 0.57 6.25 0.65 6 0.95 0.93
12 3.9 0.35 0.05 0.45 30 0.77 12.5 0.35 12 0.59 1
13 1.3 0.2 0 0.71 10 0.24 25 0.4 25 0.56 1
14 0.65 0.79 0 0.62 5 0.24 50 0.16 50 0.61 1
15 0 0.53 0 0.46 0 0.06 50 0.28 100 0.69 1
16 0 0.76 0 0.2 0 0.45 50 0.51 200 0.03 0.97
17 0 0.19 0 0.24 0 0.03 50 0.73 200 0.4 1
18 0 0.89 0 0.21 0 0.39 50 0.43 200 0.19 1
19 0 0.32 0 0.36 0 0.36 50 0.48 200 0.49 1
20 0 0 0 50 200
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showed an observable effect was between 0.25 and 1 ng/ml.
Concentrations �100 ng/ml resulted in a considerable amount of
cytotoxicity and, therefore, were not considered in this study.
Ten concentrations each of six cytokines led to one million (106)
possible combinations in the search space.

Closed-Loop Optimization of NF-�B Activity. The closed-loop opti-
mization experiment started with choosing a set of cytokine con-
centrations. Then, the cells cultured inside a microfluidic channel
were transiently stimulated with the set of cytokines for one hour.
The duration is based on previous reports of the dynamic of NF-�B
and selected so that no oscillatory response of the NF-�B will take
place (29). The fluorescent light is linearly proportional to the
NF-�B expression level (30). The GFP fluorescence intensities of
individual cells were recorded seven hours after the stimulation at
the peak time point of the fluorescence induction. The average GFP
intensity of �100 cells was fed to the Gur Game. According to the
intensity, the Gur Game determined the concentration of each
cytokine for the next iteration. These processes were repeated
during each iteration. At the beginning of the experiment, the
cytokine concentrations were chosen randomly by the Gur Game
to explore cytokine combinations with high NF-�B outputs (Fig. 4
a and b). The system was not trapped by several cytokine combi-
nations with apparently high outputs, e.g., iteration 14. Near
iteration 12, the algorithm ‘‘detected’’ a promising trend. Four
cytokines (TNF�, TNF�, IL-1�, and IL-1�) were driven to higher
concentrations but the other two (EGF and BAFF) were driven to
lower concentrations. At iteration 17, the system determined a
potent combination of cytokines for activating the NF-�B. Because
of the random walk nature of the Gur Game, the algorithm did not
settle with the large performance gains at iteration 17. The most
potent cytokine combination was (TNF� � 25 ng/ml, TNF� � 50
ng/ml, IL-1� � 50 ng/ml, IL-1� � 50 ng/ml, EGF � 2.5 ng/ml,
BAFF � 2.5 ng/ml). The random walk nature of the algorithm
continually looked for other states with better performance, and the

reward function decreased significantly several times during the
search. However, the system returned to the similar NF-�B activity
at iterations 23 and 28. A comparison between NF-�B activities
under stimulation of TNF� and the cytokine combination is shown
in Fig. 4c. The searching paths are shown in Fig. 4 d and e.

Discussion
In the viral infection experiment, we have shown that potent drug
combinations can be identified rapidly by using a closed-loop
optimization approach. With only tens of experiments, potent drug
combinations, which can inhibit close to 100% of VSV activity in
NIH 3T3 cells, have been identified. The closed-loop optimization
scheme not only enhances the antiviral activity of cytokines and
drugs, but also minimizes their dosages. To elucidate the effective-
ness of drug cocktails, we compared the antiviral activity of a potent
drug mixture (IFN� � 3.9 pg/ml; IFN� � 0.05 ng/ml; IFN� � 30
ng/ml; puromycin � 12.5 �g/ml; ribavirin � 12 �g/ml) with indi-
vidual drugs. If a single drug is applied, much higher concentrations
are required. Fig. 5a shows the dosages required for completely
inhibiting the viral activity by using the potent drug combination. If
applied individually, concentrations of 100 �g/ml and 25 �g/ml (Fig.
5b) were required for ribavirin and puromycin, respectively. Inter-
ferons were not able to totally inhibit the viral activity in the
concentration range tested (up to 10 mg/ml). However, the drug
combination identified by the Gur Game reduced the required
dosage by 10-fold for individual drug. For example, only 12 �g/ml
of ribavirin (Fig. 5a) is needed in combinatory drugs, but 100 �g/ml
of rivavirin (Fig. 5b) is needed for single-drug treatment for 100%
inhibition of viral infection. Fig. 5c shows the percentage of viral
inhibition for applying single drugs at the concentrations in the
potent combination. The data indicate the effectiveness of using
drug combinations for inhibiting the viral activity. Inhibiting viral
activity with low-dosage combinations provides new opportunities
in antiviral therapeutics, because high dosage always associates with
cytotoxicity and other side effects on biological systems. As shown

Fig. 4. Searching for a cytokine mixture that optimizes NF-�B activity. (a) Concentration of individual cytokines TNF� (gray filled square), TNF� (red filled circle),
IL-1� (green filled triangle), IL-1� (blue inverted triangle), EFG (cyan open square), and BAFF (magenta open triangle) applied at different iterations. The initial
concentration of all of the cytokines was 2.5 ng/ml. (b) Normalized GFP intensity at different iterations. Iterations 17, 23, and 28 are labeled with black open
squares. (c) Dynamic response of NF-�B activity for cells treated with the cytokine combination (blue filled circle), TNF� 50 ng/ml (green asterisk), and control
(red open circle). Data are normalized to the maximum intensity for cells treated with the cytokine combination. Data represent the mean � SEM from at least
100 cells inside the microfluidic channels. (d) Searching paths for TNF� and TNF� and (e) searching paths for IL-1� and IL-1�. Black open squares represent cytokine
concentrations at iteration 17. Each color represents a particular path.
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in Fig. 4c, the activity of NF-�B activated by the drug combination
is significantly higher than TNF�, which is a cytokine applied in
numerous NF-�B studies. It further indicates that a mixture of drugs
is often more effective than using a single stimulus. Furthermore,
combinatorial drugs are involved in actions among multiple path-
ways in the network. The effective closed-loop control scheme may
open up a new paradigm for facilitating the study of interactions
among the various mechanisms involved.

In the viral inhibition experiment, set 1 did not converge to a drug
combination that can inhibit the viral activity completely. In fact,
when the three interferons were used individually, the highest viral
inhibition observed in our experimental conditions was �15% at
100 ng/ml of IFN�. The IFN combination identified in iteration 16
of set 1 is (IFN� � 1.3 pg/ml, IFN� � 1 ng/ml, and IFN� � 50
ng/ml) and can inhibit �50% of VSV activity. The other three
independent tests (set 2, set 3, and set 4) started with very different
initial drug combinations, and they all converged to the prevention
of the viral infection within 15 iterations. This indicates the rapid
convergence of the closed-loop optimization approach for search-
ing for potent drug combinations. This result shows the search
scheme can arrive at 100% inhibition with different initial condi-
tions in the viral infection experiment. As reflected by the fast
convergence of set 2, fewer concentrations within the range results
in fast searching of the space. In general, several parameters should
be considered during the experimental design of a Gur Game study.
The concentration of the drug and the reward function, that is, the
outputs of biomarkers indicating the desired phenotypes, should be
adjusted to fine tune the balance between the robustness, converg-
ing rate, and the ability to escape from local peaks. In our
experiment, we increased the ‘‘randomness’’ with a larger step size
to improve the chance for the drug combinations to escape from
local optima while maintaining the resolution of the drug concen-
tration. If necessary, multiple experimental investigations can be
performed to identify the optimal configuration for the optimiza-
tion experiment. In the current study, the Gur Game rapidly
identifies potent cytokine and drug combinations in the search
space in both model systems. In principle, even a larger parametric

space, for example, 7, 8, or more cytokines with 107, 108, or more
combinations, is expected to achieve a similar rapidly converging
rate by using a stochastic search (see also the SI Appendix for
further discussion).

The robustness of the approach was also illustrated by the
observation that the paths by which the cytokine combinations
moved toward the peak were different in the NF-�B experiment
(Fig. 4 d and e). The system did not settle with the particular
cytokine combination at iteration 17 because of the random walk
nature of the Gur Game. The Gur Game continuously searched for
other regions in the search space, that is, different combinations of
cytokines. The system states moved away and again reached the
peak response (iterations 23 and 28) along several different paths,
indicating the effectiveness of the search algorithm. Because the
Gur Game determines the next states only according to the current
states, every iteration can be considered to be an initial search. This
resembles the random initialization in other gradient search
schemes (15).

With the potent combination of cytokines efficiently determined
by the closed-loop optimization scheme, we then varied the con-
centration of a specific cytokine while holding others constant to
understand the sensitivity of that cytokine and to verify our search
result (Fig. 6). TNF� was found to be the most sensitive in the
combination in affecting the activity of NF-�B. Elimination of
TNF� in the cytokine combination resulted in a �50% decrease in
fluorescence intensity. Total elimination of any one of TNF�,
IL-1�, or IL-1� resulted in �30% decrease in GFP intensity. The
effects of IL-1� and IL-1� were not very sensitive to their concen-
trations in the range of 25–50 ng/ml. When combined with the
potent cytokine combination, EGF decreased the NF-�B activity
with increasing dose concentration. It should be noted that EGF
alone did not show a strong effect on the NF-�B activity in 293T

Fig. 5. Effectiveness of drug cocktails. (a) Low dosages of combinatory drugs
for inhibiting 100% of the virus activity. After optimization, the optimal drug
combination contains IFN� and IFN� with concentrations orders of magnitude
smaller than ribavirin and puromycin; therefore, they are not visible in the
plot. All of the concentrations are labeled in the plot. (b) When drug is applied
individually, a high concentration of ribavirin or puromycin is required to
completely inhibit VSV activity. (c) Percentages of inhibition by individual
drugs at the concentrations found in the potent drug combination. Red line
represents inhibition of viral activity by using the potent drug combination.
Red dots present inhibition of viral activity by individual drugs.

Fig. 6. Sensitivity analysis of individual cytokines in the potent cytokine
combination. Concentrations of TNF� (a), TNF� (b), IL-1� (c), IL-1� (d), EGF (e),
and BAFF ( f) were varied while keeping the other cytokine concentrations
constant. Data show mean � SEM of at least 300 cells. Experiments were
conducted in 96-well plates. The cells were stimulated with the appropriate
concentration of cytokines for one hour and washed with fresh media. Fluo-
rescence measurements were carried out seven hours after stimulations.
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cells (data not shown). For the case of BAFF, it had a minimal effect
on NF-�B activity with or without the potent cytokine combination.
It was also very interesting to note that the Gur Game suggested
lower and lower concentrations of both EGF and BAFF as the
iterations proceeded (Fig. 4a). Therefore, the Gur Game algorithm
confidently locates the most favorable concentrations for each
cytokine, and there is no indication that a more effective combi-
nation exists in the entire search space. These data also indicate that
the effects of individual cytokines are not additive in the combi-
natorial tests and the interactions among pathways are nonlinear.

With a stochastic search algorithm to use the output information
obtained from the biological response, the closed-loop optimization
approach can effectively search for a potent drug mixture without
the need for detailed information about the effects of each agent on
the networks of pathways. We also found that a much lower dosage
is required with the drug mixture compared with individual drugs
in the viral infection experiment. In addition, new phenomena can
be identified for furthering our understanding of the complex
nonlinear interactions in a broad class of biological systems with this
approach.

Methods
Materials. Cell culture medium was supplied by Cellgro. Plasmid was pur-
chased from Clontech. Lipofectamine 2000 transfection reagent was pur-
chased from Invitrogen. All other reagents and chemicals were supplied by
Sigma unless stated otherwise.

Viral Infection. GFP-tagged vesicular stomatitis virus (VSV) was prepared by
propagation of virus on confluent monolayers of MDCK cells. Supernatant
from infected cells were cleared of debris by centrifugation and spun at
�100,000 � g through a 25% sucrose cushion by using a Beckman SW28 rotor
for 2 h. Virus pellet was gently rinsed and resuspended in PBS. Viral titers were
determined by using standard plaque assay procedures on monolayers of
MDCK cells. For all experimental infections cells were incubated with viral
inoculums at a multiplicity of infection of 1.

Plasmid Construction and Cell Line Establishment. The expression construct
pCEP4-NF-�B-d2EGFP was generated by cutting out the NF-�B-d2EGFP frag-
ment from pNF-�B-d2EGFP vector at BglII and AccI sites and inserting it into
pCEP4 vector, which has EBNA-1 and oriP to maintain episomal DNA replica-

tion (Invitrogen). pNF-�B-d2EGFP vector has a kappa enhancer element (�B4)
located in the promoter region of a d2EGFP reporter gene (a destabilized
variant of the enhanced green fluorescent protein with a half-life of 2 h) (30).
pCEP4 vector expresses a Hygromycin B drug selection marker. The resulting
construct pCEP4-NF-�B-d2EGFP was transfected into human embryonic kidney
293T cells by using Lipofectamine 2000 (Invitrogen) and normal cell culture
media supplemented with 200 �g/ml Hygromycin B (Invitrogen) was used to
establish the cell line 293T/NF-�B-d2EGFP.

Cell Culture. 293T/NF-�B-d2EGFP cells were grown in DMEM with 10% FBS
(Omega), 500 IU/ml Penicillin (Cellgro), 500 �g/ml Streptomycin (Cellgro)
supplemented with 200 �g/ml Hygromycin B in 5% CO2 at 37°C. The cells have
a doubling time of �1 day and we split them every 3–4 days to avoid
confluence. For 96-well-plate experiments, cells were cultured in the plate
overnight and allowed to reach �80% confluence. The cells were stimulated
with the appropriate concentration of cytokines for 1 h and washed with fresh
media. Fluorescence measurements were performed 7 h after stimulations,
when the fluorescence intensity reaches maximum value.

Microfluidics. A microfluidic platform has been developed to implement the
closed-loop optimization approach. Microfluidic channels were fabricated by
micromolding of polydimethylsiloxane (PDMS) (Sylgard, 184) on photoresist
master. The masters for micromolding were fabricated by photolithography
of positive photoresist SJR 5740 (MicroChem, 41001). Three layers of photore-
sist were spun on the glass substrate to achieve a final thickness of 60 �m. After
curing, the PDMS replicas were carefully peeled off from the master. The
channels were sealed with a 0.17-mm-thick cover glass. The PDMS replicas and
the glass pieces were oxidized for 1 min in a plasma cleaner (Harrick, PDC-001).
The two layers were immediately brought into contact to achieve irreversible
sealing of the channels.

The microfluidic channel is loaded inside a closed chamber (Instec Inc.,
HCS60-STC20A) with temperature control, adjusted to 37°C during cell culture
experiment. The chamber is supplied with 5% CO2 mixed with air. The diffu-
sivities for O2 and CO2 in PDMS are 4.1 � 10�5 and 2.6 � 10�5 cm2/sec,
respectively. More information is available in the SI Appendix.
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Principle of the Gur Game 

The principle of the Gur Game (1) is based on biased random walks of finite-state automata (a 

set of drugs). The automata describe a set of drugs with assigned concentration values and a set 

of rules is included for determining how the concentration of the drug switches from one value to 

the other. Each drug concentration is referred as a state of the automaton. The overall goal of the 

automata design is to have the drugs to self-organize (choose the optimal concentrations) in an 

attempt to maximize the overall system performances (desired biological responses indicated by 

biomarkers). The biological response is transformed into a reward function, which describes the 

probability of the drug to switch between different concentrations. 

 

To understand the principle of the Gur Game algorithm, it is helpful to consider an example for 

choosing the concentration of a drug to maximize the antiviral activity (AVA). We design a 

finite-state automaton with only two states, i.e., one drug with two concentrations (SI Fig. 7). 

Assuming the two concentrations, C1 and C2, of the drug will give antiviral activities of AVA1 

and AVA2, respectively. A reward function can be defined to map AVA1 and AVA2 to probabilities 

of r1 and r2 of the drug to be rewarded. For example, the percentage of cells not being infected 

(the AVA) can be considered to be the probability of the drug being rewarded (i.e., the reward 

function). At each iteration, the drug can either be awarded or penalized. If the concentration C1 

is applied, then the drug will have a chance of r1 to be rewarded. The drug then has a probability 

of (1 - r1) and (1 - r2) to receive a penalty in the corresponding states. If the drug is rewarded, it 

chooses to keep the same concentration. Otherwise, the drug concentration will be switched from 

one concentration to the other. Because a concentration that gives higher AVA will have higher 

chance to be rewarded, the drug concentration will have a higher chance to stay in a 

concentration with high AVA. If the drug concentration gives a low AVA, the drug will have a 

high chance to be switched to the other concentration. In general, this design encourages the drug 

to choose a concentration with high AVA because the drug has a higher chance of being 

rewarded. 

 



C1 C2

1-r1 (penalty)

1-r2 (penalty)

r2 (reward)r1 (reward) C1 C2

1-r1 (penalty)

1-r2 (penalty)

r2 (reward)r1 (reward)

 

 

Fig. 7. A simple automaton design with two states (one drug with two possible concentrations). 

The drug concentration stays the same if the automaton (drug) is rewarded. Otherwise 

(penalized), the drug is switched to the other concentration. 

 

The asymptotic behavior of the drug can be modeled by using the Markov chain analysis (2). We 

define π1 and π2 to be the steady-state probabilities of being in drug concentrations of C1 and C2, 

respectively. The fact that the probabilities sum to unity gives Eq. 1 (the drug chooses either C1 

or C2). Equating the transition probabilities (switching from one concentration to the other) leads 

to Eq. 2. Solving the equations gives the steady-state probability of choosing C2 in Eq. 3. 

 

π1+π2 = 1           [1] 

 

π1(1-r1) = π2(1-r2)          [2] 
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If we assume drug concentrations, C1 and C2, give AVA of 0.4 and 0.8 and the AVA is directly 

defined as the reward probability (i.e., r1 = 0.4 and r2 = 0.8,), the steady state probability of the 

drug to choose the concentration C2 will be 0.75, whereas the probability of choosing the 

concentration C1 is 0.25. Therefore, the drug chooses C2 (high AVA) three times more often 

than C1 (low AVA). In other words, the drug self-organizes to spend more time in a 

concentration with a higher AVA level. 

 



The same idea can be extended to the general case of a drug with multiple concentrations. In 

general, the drug moves to the system state toward the center of the state space if penalized, and 

away from the center if rewarded (see SI Fig. 8). This design allows the drug to “detect” 

promising trends of drug concentrations. SI Fig. 8 shows a drug with 2n states (from –n to +n) 

and each state is assigned with a different concentration. If the drug is rewarded, the automaton 

moves from state i to i + 1 if i is positive or from i to i – 1 if i is negative. The automaton stays in 

state n or –n if it is in either one of those states. For a penalty, it moves from state 1 to –1 or vice 

versa if it is at one of the state, otherwise it moves from state i to i – 1 if i is positive, or from i to 

i + 1 if i is negative. If a low drug concentration has a high AVA (being reward), the automaton 

attempts to further improve the performance by searching for even lower concentrations. If the 

drug concentration goes too low and the drug has a high chance to be penalized, the drug 

concentration will be driven back to a relatively higher concentration. In the case of multiple 

drugs, the drugs collectively search for a mixture with high AVA (being reward). This 

framework provides a very rapid and robust control approach for optimizing drug combinations. 

For complete details, the reader is referred to original discussions of the Gur Game (1-4). 
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Fig. 8. An automaton design with multiple concentrations. 

 

Implementation of the Gur Game 

 

Flowchart Representation of the Gur Game. SI Fig. 9 shows a flowchart representation of the 

Gur Game applied in this study. The study started with initiation of the concentrations of a 

mixture. Then, an experiment using the drug mixture was performed to estimate the reward value 

(the probability of the drug being rewarded or penalized). In the VSV experiment, the reward 

value was estimated according to the percentage of cells not expressing GFP (i.e., not infected by 



the virus). In the NF-κB experiment, the peak GFP intensities were normalized to map the 

system state from 0 to 1 with high GFP intensities corresponding to values nearer 1. The GFP 

value was the average fluorescence intensity of individual cells measured by a 16 bit cooled 

CCD camera (Photometric CH350L). Intensity values of individual cells were measured by using 

ImageJ. The GFP data are the average response of ≈100 cells. The data are normalized to be the 

reward value. The normalization value was determined experimentally and iteratively such that 

the reward value is between 0 and 1. A random number from 0 to 1 was generated and was 

compared with the reward value for each automaton. A set of predefined rules of the automata 

design were used to determine the drug concentrations in the subsequent iteration to 

probabilistically drive the drugs toward viral inhibition or high NF-κB activity. The 

concentrations of the drugs were then determined for the next iteration. The process is repeated 

for each drug during each iteration. The process can be terminated when the system states are 

spending a large portion of time in some states and/or when a preset performance of the system 

is reached. Otherwise, a new iteration is initiated and the process repeats. 
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Fig. 9. Flowchart representation of the Gur Game algorithm. 

 

Drug Concentrations for the Antiviral Experiment. We have designed four sets of 

experiments for searching the antiviral drug combinations. The automata design is shown in SI 

Tables 2 to 4. Set 1 and set 2 have 6 states (concentrations) for each automaton (drug). Set 3 and 

set 4 have the same search space, which has 10 states for each automaton. Each state represents a 

drug concentration shown in the SI Tables 2 to 4 and the corresponding automata are shown 

below. We have also applied different initial conditions in the experiments (SI Table 5). For set 1 

and set 2, initial concentrations were zero for all agents and random initializations were applied 

for set 3 and set 4. 

 

Tables 2-4. Automata design for antiviral drug cocktails. 

 

Table 2. Search space for set 1 

State -3 -2 -1 1 2 3 

IFNα, pg/ml 0 1.3 6.5 13 65
 

130 

IFNβ, ng/ml 0 0.1 0.5 1 5 10 

IFNγ, ng/ml 0 10 50 100 500 1000 

-1 1 2 3-3 -2

Penalty

Reward PenaltyPenalty

PenaltyPenalty

PenaltyReward
Reward

Reward Reward

Reward

-1 1 2 3-3 -2

Penalty

Reward PenaltyPenalty

PenaltyPenalty

PenaltyReward
Reward

Reward Reward

Reward

 

 

Table 3. Search space for set 2 

State -3 -2 -1 1 2 3 

IFNα, pg/ml 0 0.65 1.3 6.5 13 65
 

IFNβ, ng/ml 0 0.05 0.1 0.5 1 5 

IFNγ, ng/ml 0 5 10 50 100 500 

Puromycin, µg/ml 0 0.125 0.25 1.25 2.5 12.5 



Ribavirin, µg/ml 0 0.5 1 5 10 50 

-1 1 2 3-3 -2

Penalty

Reward PenaltyPenalty

PenaltyPenalty

PenaltyReward
Reward

Reward Reward

Reward

-1 1 2 3-3 -2

Penalty

Reward PenaltyPenalty

PenaltyPenalty

PenaltyReward
Reward

Reward Reward

Reward

 

 

Table 4. Search space for set 3 and set 4 

State -5 -4 -3 -2 -1 1 2 3 4 5 

IFNα, pg/ml 0 0.65 1.3 3.9 7.8 15.6 32.5 65 130 260 

IFNβ, ng/ml 0 0.05 0.1 0.3 0.6 1.2 2.5 5 10 20 

IFNγ, ng/ml 0 5 10 30 60 120 250 500 1000 2000 

Puromycin, µg/ml 0 0.125 0.25 0.75 1.5 3 6.25 12.5 25 50 

Ribavirin, µg/ml 0 0.5 1 3 6 12 25 50 100 200 

 

-1 1 2 3-3 -2

Penalty

Reward PenaltyPenalty

PenaltyPenalty

PenaltyReward
Reward

Reward Reward Reward

4 5
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Reward
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PenaltyPenalty

PenaltyReward
Reward

Reward Reward Reward

4 5

Penalty

Reward
Reward

-5 -4

Reward

PenaltyPenalty
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Table 5. Initial conditions of the experiment. 

 Set 1 Set 2 Set 3 Set 4 

IFNα, pg/ml 0 0 7.8 1.3 

IFNβ, ng/ml 0 0 0.6 1.2 

IFNγ, ng/ml 0 0 60 1000 

Puromycin, µg/ml - 0 1.5 0.75 

Ribavirin, µg/ml - 0 6 12 

 

Cytokine Concentrations for Regulating NF-κκκκB Activity. In this Gur Game implementation, 

we assigned a different drug concentration to each state of the automaton. This allows for a 

search technique that rapidly moves around the search space and is less likely to be trapped in 

any one state. All cytokines were represented by automata with 10 discrete states (0, 0.25, 0.5, 1, 



2.5, 5, 10, 25, 50, and 100) ng/ml, which span across three orders of magnitude, in the NF-κB 

experiment (SI Table 6). The states of automata were designed for maximizing the range of 

cytokine concentrations being tested while maintaining the resolution for searching the optimal 

cytokine concentration. During each iteration, a random number was generated for each 

automaton. The numbers were compared with the reward value. If the reward value was greater 

than the random number, the automaton was rewarded. Otherwise, the automaton was penalized. 

The automaton then decided the state in the next iteration according to the automaton design. In 

general, the state moves toward the center if penalized and away from the center if rewarded. 

 

Table 6. Automata design for manipulating NF-κB activity 

State -5 -4 -3 -2 -1 1 2 3 4 5 

TNFα, ng/ml 0 0.25 0.5 1 2.5 5 10 25 50 100 

TNFβ, ng/ml 0 0.25 0.5 1 2.5 5 10 25 50 100 

IL-1α, ng/ml 0 0.25 0.5 1 2.5 5 10 25 50 100 

IL-1β, ng/ml 0 0.25 0.5 1 2.5 5 10 25 50 100 

EGF, ng/ml 0 0.25 0.5 1 2.5 5 10 25 50 100 

BAFF, ng/ml 0 0.25 0.5 1 2.5 5 10 25 50 100 

-1 1 2 3-3 -2

Penalty

Reward PenaltyPenalty

PenaltyPenalty

PenaltyReward
Reward

Reward Reward Reward

4 5

Penalty

Reward
Reward

-5 -4

Reward

PenaltyPenalty

Reward Penalty

-1 1 2 3-3 -2

Penalty

Reward PenaltyPenalty

PenaltyPenalty

PenaltyReward
Reward

Reward Reward Reward

4 5

Penalty

Reward
Reward

-5 -4

Reward

PenaltyPenalty

Reward Penalty
 

 

Characteristics of the Gur Game Algorithm 

 

In most biological systems, a complete model of the governing network is often not available and 

only partial information of the system of interest is known. The Gur Game provides a generic 

mechanism for regulating these complex systems without the requirement of a preassumed 

model of the system or knowledge of how the system performance depends on the variables 

being manipulated. Unlike gradient search methods, the Gur Game drives the system state to 

higher performance probabilistically, instead of deterministically. The probabilistic characteristic 



of the Gur Game allows the system state to “escape” from local optima and search for the global 

optimum in the search space. For the same reason, the algorithm performs robustly in a noisy 

environment. This robustness is critical for controlling biological systems, which are intrinsically 

noisy (5). 

 

Another important characteristic of the Gur Game is that the optimality is determined by the 

average behavior (1, 2). The automata states spend more time at states with high reward 

probability, i.e., good system performance. There is no dynamic difference between the transient 

behavior of the system and its steady-state behavior. This feature enables the system to respond 

to a changing population and/or reward function. It is interesting to compare this characteristic 

with the robustness in cellular functions (6). In general, the automata and the reward function 

(mapping between the system performance and reward probability) should be adjusted to fine 

tune the balance between the robustness, converging rate, and the ability to escape from local 

traps (1, 2). For distributed control and other self-organizing systems, it is preferable to have 

small step size such that the system locks into desire behaviors (4). The trade-off is that more 

steps are required for the system to reach to an optimal solution. For searching and optimization 

experiments, increasing the “randomness” with larger step size improves the chance that the 

automata will escape from local optima and rapidly search for the global solution (7). 

 

Reward Function and Automata Design 

 

Reward Function. A key concept in the Gur Game is the reward function, which is a global 

figure of merit. Basically, the reward function is a measurement of the system performance as a 

whole. Similar concepts can be found in other optimization approaches. For instance, it is called 

a fitness function in genetic algorithms (8) and an energy function in simulated annealing (9). It 

is one of the most important parts for the success of a closed-loop optimization experiment. The 

design of a reward function critically determines how well the algorithm is able to solve the 

problem. In the VSV experiment, the reward function is the percentage of cells not being 

infected (indicated by GFP expression). In the NF-κB experiment, the reward function is 

estimated by the NF-κB activity (indicated by the fluorescence intensity). A deep appreciation of 

the reward function not only provides the scientist extra freedom to improve the search but also 



broadens the applicability to a wide class of biological systems. To design a reward function, a 

set of systemic output indicators should be defined. In most cases, phenotypic responses such as 

proliferation rates, gene expressions, and differentiation efficiency can be directly considered as 

the reward function. It should also be noted that the reward function can be nonlinearly mapped 

to the system performance to improve the search efficiency and the converging rate. In general, 

the reward function of the system can be multimodal, nonlinear, and even discontinuous. 

 

Automata Design. As discussed, the design of the automata is an important component in the 

realization of the optimization process. Concentration of drugs (states of the automata) can be 

assigned depending on the range of the drug concentrations intended to be explored. The values 

can be linear, logarithmic, or other nonlinear functions depending on the nature of the problem. 

The number of states should be designed according to the requirements of the converging rate, 

randomness, and resolution. Unlike, surrogate-based optimization, experimental implementation 

of a closed-loop optimization scheme does not require “training” of inputs. Extension of the 

input ranges (drug selection and concentration) can be performed by including extra automata 

and states of the automata. Another advantage of the stochastic search algorithm is that the 

converging rate is usually maintained during extension of the input ranges. 

 

Systems with Multiple Outputs. For optimizing multiple parameters, the vector norm or a 

weighted average of these parameters can be applied to optimize the overall performance. Other 

schemes can also be applied to account for multiple output parameters. In general, the more 

information, such as some key molecular components, that is known about the system, the easier 

to design the experiment. Unfortunately, these parameters are usually not clear and the reward 

functions in some problems may not be straightforward. Most cases require a slight modification 

of the problem to define the reward function. If necessary, multiple generations of the closed-

loop optimization experiment can be performed systemically to identify the appropriate reward 

functions. In the current study, we have demonstrated the optimization of two different 

biological systems. Other examples of the implementation of the Gur Game can be found 

elsewhere (1, 2). 

 

Microfluidic Channel and Cell Culture 



 

Microfluidic Cell Culture System. The microfluidic channel is integrated into a cell culture 

chamber (Instec Inc, HCS60-STC20A) with temperature control at 37°C. The chamber is 

mounted on a fluorescence microscope (Nikon TE200) for real-time monitoring. Fluorescence 

images were captured with a 1024 × 1024 pixel, 16-bit cooled CCD camera (Photometric 

CH350L). Mini peristaltic pumps (Instech Inc, P625-10638), pressure transducer (Honeywell, 

ACSX05DN), and temperature probe (Omega, DP460) were connected to the chamber and were 

centrally controlled by a Labview software (National instruments). The entire setup was sitting 

inside a vertical clean bench, which prevents contamination from the environment (SI Fig. 10). 

 

 

 

Fig. 10. Microfluidic channel and cell culture system. 

 

Preparation Microchannel for Cell Culture. Before the experiment, the channels were 

sterilized by flowing 70% ethanol for 30 min. The channels were then washed with 25% ethanol, 

DI water, and PBS each for 10 min. The channel surface was then incubated with 200 mg/ml 

fibronectin for >1 h to modify the channel surface for promoting cell adhesion. Culture media 

(DMEM without phenol red) was flowed into the channel and the channel was then filled with a 

suspension of 293T cells. The cells were allowed to adhere to the channel surface for 4-6 h and 

medium was then perfused at a flow rate of 0.9 ml/min. At this flow rate, the cells experienced 

wall shear stress of 0.02-0.5 dyne/cm
2
 as estimated by numerical simulation (CFDRC CFD-

ACE+). This value was below the typical range of shear stress for affecting normal cell functions 



or inducing other cellular responses. The cells were allowed to culture in the device overnight 

before the experiment. The cells could be cultured for an extended period and reached a high 

confluency. With normal culture conditions, the cells had similar morphologies and growth rates 

compared to those in cell culture dish. 
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