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ABSTRACT
In many biomanufacturing areas, such as tissue-engineering scaffold fabrication, the biodegradation
performance of products is a key to producing products with desirable properties. The prediction of
biodegradation often encounters the challenge of how to incorporate expert knowledge. This article
proposes a Constrained Gaussian Process (CGP) method for predictive modeling with application to
scaffold biodegradation. It provides a unified framework of using appropriate constraints to accommodate
various types of expert knowledge in predictive modeling, including censoring, monotonicity, and bounds
requirements. Efficient Bayesian sampling procedures for prediction are also developed. The performance
of the proposedmethod is demonstrated in a case study on a novel scaffold fabrication process. Compared
with the unconstrained GP and artificial neural networks, the proposedmethod can providemore accurate
andmeaningful prediction. A simulation study is also conducted to further reveal the properties of the CGP.

1. Introduction

Biomanufacturing is an emerging area that is experiencing
rapid growth (Grant and Settles, 2009). In biomanufacturing,
biodegradation is an important performance aspect of products
(Buchanan, 2008), especially for those integrated into human
systems and made by degradable biomaterials. Figure 1 depicts
the complicated biodegradation process caused by hydrolysis:
in the human body environment, water molecules penetrate
into the matrix of the product, causing it to swell. This triggers
the breakdown of chemical chains, leading to weight loss, which
continues until complete dissolution of the product.

For many biomanufacturing processes, the biodegrada-
tion rate of the product needs to be designed to meet the
requirements of a specific application. One typical example
is scaffold fabrication in tissue engineering, as illustrated in
Figure 2, in an attempt to develop biological substitutes for
failing tissues/organs (Fisher et al., 2007; Chu and Liu, 2008;
Sultana, 2013). First, relevant cells are grown in vitro to form a
three-dimensional tissue/organ. To enable the cells to grow in
favored orientations—i.e., those in the native tissue—the cells
are seeded onto the scaffold, which is a highly porous matrix
made from degradable biomaterials. The pores on the scaffold
provide space for flow transport of nutrients and metabolic
wastes, thus forming a temporary substrate and microenviron-
ment for cells. Then the cell–scaffold composite is implanted
into the human body, where the scaffold eventually degrades,
leaving only the new tissue/organ. As the scaffold plays a critical
role in the success of this development, it is crucial to match
the degradation rate of the scaffold to the cell growth rate in
the application of interest (Burdick and Mauck, 2011). If the
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Station, TX, USA.
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degradation rate is too fast, there can be insufficient support to
the cells, whereas if the degradation rate is too slow, the scaffold
may impede the growth of the new tissue.

In scaffold fabrication, the biodegradation performance of
products is usually characterized by an experiment setup as
shown in Figure 3 (Henry et al., 2007; Dey et al., 2008; Nicode-
mus and Bryant, 2008). Scaffold specimens are incubated in
phosphate-buffered saline (PBS)—i.e., salt solution—used to
mimic the environment found in the human body for a period
of time; at each predetermined time point, one specimen is
taken out, dried, measured for weight loss, and then discarded.
Scaffold products with desired biodegradation performances
can be obtained by adjusting the process variables of scaffold
fabrication, such as those in material synthesis (e.g., compo-
sitions of the biomaterial and their percentages) and those in
pore construction (e.g., pore size and processing conditions;
Liao et al. (2002); Cui et al. (2015)).

Achieving the desired biodegradation performance is, how-
ever, a challenge, due to the lack of an understanding of the
relationship between process variables and biodegradation
performance of products. Analytical models of the relationship
are often not available, due to the effects of process variables
on scaffold biodegradation being very complicated. As a result,
the trial-and-error approach predominates in this field (Bur-
dick and Mauck, 2011). In this study, we focus on data-driven
methods for predictive modeling of scaffold biodegradation.
The objective is to establish an empirical model for biodegra-
dation prediction in scaffold fabrication such that it will enable
process optimization to produce scaffolds with a required
biodegradation performance.
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Figure . An illustration of the biodegradation of products made from degradable biomaterials.

Figure . The development of biological substitutes for failing tissue/organs in tis-
sue engineering.

It is worth pointing out that the problem considered in this
article is different from degradation modeling in reliability
studies (Chen and Tsui, 2013; Bian and Gebraeel, 2014; Ranfiee
et al., 2014). First, the biodegradation of scaffolds is treated as
a controllable performance aspect of products in this study,
which is different from the degradation of engineering com-
ponents that is a reliability concern. Second, the modeling of
biodegradation concerns the characterization of the relation-
ship between product biodegradation performance and process
variables in scaffold fabrication, whereas degradation modeling
in reliability studies concerns the characterization of the time
evolution of degradation. Finally, the data used in this study
are scaffold biodegradation measurements (as shown in Fig. 3)
under different settings of process variables. Often the measure-
ments are collected at a small number of time points (e.g., five in
the case study), as quantification of biodegradation is very time-
consuming (taking months or years in some cases). In contrast,
classic time-series data tend to be used in reliability studies.

Surrogate models are common methods for predictive mod-
eling of complex relationships between process variables/design
parameters (predictors) and product performance (response) in
manufacturing applications (Chen et al., 2006; Tsai et al., 2012;
Arendt et al., 2015). Among various surrogate models, Gaussian
Process (GP) and Artificial Neural Networks (ANNs) are two

popular approaches that are widely used in problems similar
to the one studied in this article. For example, GP modeling is
used in the prediction of a product’s mechanical performance
in nanomanufacturing (Pourhabib et al., 2015) and of wafer
geometric quality in semiconductor manufacturing (Jin et al.,
2012). ANNs are used in the prediction of surface roughness
and other quality measures in machining (Feng and Wang,
2003, 2004; Feng et al., 2006).

However, the aforementioned surrogate methods may not
work well for modeling scaffold biodegradation, as expert
knowledge needs to be incorporated to ensure meaningful
prediction. Such knowledge includes the following:

1. Full-degradation censoring: Once the point of full degra-
dation is reached, the weight loss measurement will be a
constant 100%.

2. Monotonicity: Intrinsically, the biodegradation of scaf-
folds is monotonically increasing with respect to time
and to some process variables in scaffold fabrication.

3. Bounds of weight loss: The percentage of weight loss is
bounded by 0% and 100%.

Without guidelines from expert knowledge, those methods
are likely to result in poor predictions and interpretation. Thus,
a novel modeling method is called for, one that is able to accom-
modate these three types of expert knowledge.

Zeng et al. (2016) develop a constrained hierarchical model
for the problem of modeling scaffold biodegradation, where
one type of expert knowledge is incorporated as a constraint
on model parameters. This approach is easy to implement and
creates a good interpretation; however, it only works for mono-
tonicity constraints. In the literature, some nonparametric-
constrained modeling methods, such as shape-constrained
function estimation methods (e.g., Shively et al., 2011; Wang
andGhosh, 2012; Chatterjee et al., 2015), have been shown to be
useful for this problem. However, they also can only deal with
monotonicity constraints. Moreover, they are designed for the
one-dimensional case (i.e., a single predictor) as opposed to the

Figure . Experimental setup to characterize biodegradation in scaffold fabrication.
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multi-dimensional case (i.e., more than one predictor) assumed
in this study. There are also some papers that consider shape
constraints inGPmodeling (Riihimäki andVehtari, 2010;Wang,
2012; Lin and Dunson, 2014; Wang and Berger, 2016; Lenk and
Choi, 2017). These methods can incorporate constraints con-
veniently and do work for multi-dimensional cases but, again,
they are limited to monotonicity and other shape constraints.

In this article, we propose a Constrained GP (CGP) method
for the predictive modeling of scaffold biodegradation. It pro-
vides a unified framework to accommodate the aforementioned
three types of expert knowledge in the form of constraints.
Efficient Bayesian algorithms are developed and used for model
estimation and prediction. The algorithms address several
issues in the implementation of the CGP such as the identifi-
cation of constrained locations and sampling of posteriors. The
main contributions of this work are as follows:

1. The CGP method introduces a novel, convenient way
to accommodate expert knowledge in predictive mod-
eling of product performance. The GP is known to be a
flexiblemethod for predictivemodeling (Rasmussen and
Williams, 2006). The formulation of expert knowledge
as appropriate constraints on the GP modeling makes it
intrinsically flexibile for accurate prediction with mean-
ingful interpretation. Moreover, the proposed method
can provide useful inference for scaffold fabrication, such
as estimate of the time to reach full degradation.

2. Although the proposed method is illustrated using the
scaffold biodegradation problem, it has broad appli-
cability in other manufacturing processes, such as
biomaterial-based additive manufacturing (Wei, Wang,
Su,Wang, Qiu, Zhang, et al., 2015). It can also be applied
to other types of product performance, such as mechan-
ical and swelling performances (Wang et al., 2015; Wei,
Wang, Su, Wang, and Qiu, 2015), where the three types
of expert knowledge also apply.

3. Unlike most existing studies that utilize simulated or
observational data of large sample sizes, this study
demonstrates a case of experimental data with limited
samples and the advantages of the proposed CGP in pre-
diction are validated in comparison with GP and ANNs.
A simulation study is also conducted to reveal important
properties of the CGP.

The remainder of this article is organized as follows. Sec-
tion 2 reviews the basics of the GP model and presents a
definition of the scaffold biodegradation modeling problem.
Section 3 describes the proposed CGP method to impose each
type of constraints. Some related problems are discussed in Sec-
tion 4. Results of the case study are given in Section 5. Section 6
presents two numerical examples. Finally, Section 7 concludes
the paper and discusses future work. Bayesian sampling pro-
cedures to implement the CGP method are summarized in
Appendix C, for the convenience of practitioners.

2. Background and problem definition

In this section, we will briefly review the basics of GP modeling
and prediction. Then we define the problem of modeling scaf-
fold biodegradation.

2.1. GPmodel

Suppose the observed data are (xi, yi), i = 1, . . . , n, where xi =
[xi1, . . . , xid]′ is the ith realization of the d-dimensional predic-
tor and yi is the corresponding response. Following the GP lit-
erature (Santner et al. 2003; Fang et al., 2005), we call x1, . . . ,
locations. To model the relationship between the response and
predictors, the GP modeling considers

yi = μ+ f (xi)+ εi, (1)

where μ is the mean, f(xi) is a random function of xi, and
εi ∼N(0, σ 2

ε ) is the random error, called the nugget effect,
which is independent of f(xi). Here the random function
f(x) follows a GP with zero mean and covariance function
σ 2
f R(x). That is, the vector [ f (x1), f (x2), . . . , f (xn)]′ follows

a multivariate normal distribution with f (xi) ∼ N(0, σ 2
f ) and

cov( f (xi), f (x j)) = σ 2
f Ri j for i�=j. A popular choice for the

correlation function is the Gaussian correlation function (Ras-
mussen and Williams, 2006) such that

Ri j =
d∏

w=1

exp
[− θw(xiw − x jw)

2], (2)

where θ = [θ1, . . . , θd]′ are scale parameters on each dimension
of the predictor. Thus, the correlation of f(xi) and f(xj) depends
on the distance between the two locations xi and xj.

By denoting y = [y1, y2, . . . , yn]′, X = [x1, x2, . . . , xn]′, ε =
[ε1, ε2, . . . , εn]′, it is easy to see that

y ∼ N
(
μ1n, σ 2

fR(X,X)+ σ 2
ε In
)
, (3)

where 1n is ann-dimensional column vector of ones andR(X,X)
is the correlation matrix of f(X) = [ f (x1), f (x2), . . . , f (xn)]′
with the (i, j)th entry Rij, and In is the n× n identity matrix. For
notational convenience, we denote the covariance function by

K00(X,X) = σ 2
fR(X,X) = (K00(xi, x j))n×n, (4)

where K00(xi, x j) = cov( f (xi), f (x j)) = σ 2
f Ri j. Here the

superscript “00” is to distinguish the covariance function of
the GP from other covariance functions, such as those given in
Section 3.2.

The predication based on GP modeling is straightforward as
follows. Let X∗ = [x∗

1, x∗
2, . . . , x∗

n∗]′ be the vector of locations
for prediction and f(X∗) = [ f (x∗

1 ), f (x∗
2 ), . . . , f (x∗

n∗ )]′ be the
function values at these locations. Since f(x) follows a GP, it is
easy to find that (f(X)′, f(X∗)′)′ follows a multivariate normal,
and f(X∗) given y also follows a multivariate normal with mean
and variance–covariance matrix as follows (Schabenberger and
Gotway, 2005):

E[f(X∗)|y, ψ] = μ1n∗ + K00(X∗,X)
[
K00(X,X)+ σ 2

ε In
]−1

×(y − μ1n),

cov
[
f(X∗)|y, ψ] = K00(X∗,X∗)− K00(X∗,X)

×[K00(X,X)+ σ 2
ε In
]−1K00(X,X∗), (5)

where ψ = [μ, θ, σ 2
f , σ

2
ε ] contains the parameters of the

GP, K00(X∗,X) = cov(f(X∗), f(X)) = σ 2
fR(X

∗,X), and
K00(X∗,X∗) is similarly defined. Thus, the conditional mean
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E[f(X∗)|y, ψ] in Equation (5) can be used as a best linear
unbiased predictor of f(X∗).

It should be noted that estimation and prediction based on
GPmodeling are often described in the Bayesian framework. In
this framework, the distributions based on the basic setup of the
GP—e.g., Equation (3)—are called prior distributions, whereas
those updated distributions given data—e.g., Equation (5)—are
called posterior distributions. This framework is followed in this
article.

2.2. Predictivemodeling of scaffold biodegradation

There are two sets of predictors in scaffold biodegradation: (i)
time and (ii) the process variables used in the fabrication of
the scaffold. For convenience, we will use the two-dimensional
case, with time t and a process variable z as predictors, to
illustrate the problem of modeling biodegradation; however, the
proposed CGP is a generic method that can be applied to multi-
dimensional cases. Suppose the biodegradation experiment
is conducted at a grid of nt time points (t1 < t2 < · · · < tnt )
and nz values of the process variable (z1 < z2 < · · · < znz ).
We denote {x1, . . . , xn} as these n = nt × nz different set-
tings of the predictors. The corresponding responses are the
weight loss measurements {y1, . . . , yn}. Figure 4 illustrates
the structure of the data (not real data), where each stream
of solid dots represents biodegradation measurements under
the same value of the process variable. The objective of this
work is to model the relationship between the response and the
predictors and thus enable us to predict the weight loss at new
locations x∗

1, x∗
2, . . . , x∗

n∗ . In the modeling, the three types of
expert knowledge described in the Introduction (i.e., censoring,
monotonicity, and bounds requirements) are taken into account.

It is worth pointing out that a new location can represent
(i) an unsampled time point under a sampled value of z (e.g.,

a time point between t1 and t2 under z = z1); or
(ii) a sampled time point under an unsampled value of z (e.g.,

t2under a z value between z1 and z2); or
(iii) an unsampled time point under an unsampled value of

z (e.g., a time point between t1 and t2 under a z value
between z1 and z2).

In addition, the t value and/or z value of a new location can
be within or outside of the observed data region; the estima-
tion of weight loss in these two cases is called interpolation and
extrapolation, respectively. For simplicity, both cases are called

Figure . Illustration of the biodegradation data used in this study.

“prediction” in this article, and the performance of the proposed
method in each case will be investigated in the case study.

3. The proposedmethod

This section describes the proposed CGP method for scaf-
fold biodegradation modeling, where the three types of expert
knowledge will be incorporated in the form of constraints,
referred to as the censoring constraint, monotonicity constraint,
and bound constraint. Themethod simultaneously imposesmul-
tiple constraints of these three types. To facilitate understanding,
how to impose each type of constraint will be presented in the
following subsections.

3.1. Imposing the censoring constraint

Censored measurements are often encountered in scaffold
biodegradation experiments, as shown in Figure 5, where the
censored measurement occurs at xn = [tnt , znz ]′. This measure-
ment indicates that full degradation is reached at or before tnt
under z = znz . Obviously, the measured value “100%” cannot be
directly used as the response at xn in the modeling and predic-
tion study.Herewe propose a novelmethod to take this censored
measurement into account.

The idea is as follows: Let the dashed line in Figure 5 repre-
sent the true biodegradation trajectory during themeasurement
period. The piece of the line above “100%” is not realizable, due
to the full degradation of the scaffold; it is simply an extension
of the realizable biodegradation trajectory. Let yn be the weight
loss at xn, denoted by the dotted circle in Figure 5. Note that yn
is not an actual measurement but is rather an imagined quan-
tity. Also, yn is a random variable, which cannot be lower than
100% based on the actual measurement at this location. Conse-
quently, we can impose a constraint “yn � 100” in the modeling
study. The CGP method following this idea is described below.

Let us first consider the case with one censored measure-
ment as shown in Figure 5. Denoting the uncensored data
as y(n−1) = [y1, y2, . . . , yn−1]′, X(n−1) = [x1, x2, . . . , xn−1]′,
the whole data set is y = [y(n−1); yn], X = [X(n−1); xn]. From
Equation (3), the prior of yn is a truncated Gaussian:

π(yn) = N
(
μ, σ 2

f + σ 2
ε

)
· I(yn ≥ 100), (6)

where I(.) is an indicator function. Given this prior, the joint
(conditional) posterior of the prediction f(X∗) and yn can be
found, as stated below.

Figure . Illustration of the censoring constraint.
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Proposition 1. Given the prior in Equation (6), the joint poste-
rior distribution of (f(X∗), yn) is

P
(
f(X∗), yn|y(n−1), ψ

)=P
(
f(X∗)|y(n−1), yn, ψ

)·P(yn|y(n−1), ψ)

=P(f(X∗)|y, ψ)·P (yn|y(n−1), ψ
)
,

where

yn|y(n−1), ψ ∼ N (m(xn),V (xn)) · I(yn ≥ 100), (7)

f(X∗)|y, ψ ∼ N
(
m(X∗),V(X∗)

)
, (8)

with

m(xn) = μ+K00(xn,X(n−1))
[
K00(X(n−1),X(n−1))+σ 2

ε In−1)
]−1

× (y(n−1) − μ1n−1
)
,

V (xn) = K00(xn, xn)− K00(xn,X(n−1))

×[K00(X(n−1),X(n−1))+ σ 2
ε In−1

]−1K00(X(n−1), xn),

m(X∗) = μ1n∗ + K00(X∗,X)
[
K00(X,X)+ σ 2

ε In
]−1
(y − μ1n),

V(X∗) = K00(X∗,X∗)− K00(X∗,X)
×[K00(X,X)+ σ 2

ε In
]−1K00(X,X∗).

The proof is given in Appendix A. The above result indicates
that the joint posterior of f(X∗) and yn given the uncensored
data y(n−1) and theGPparameterψ can be decomposed into two
parts: the conditional posterior of yn given y(n−1) and the condi-
tional posterior of f(X∗) given y(n−1) and yn. The specific forms
of the two conditional posteriors are given in Equations (7) and
(8). Specifically, the conditional posterior of yn is a truncated
normal distribution, whereas the conditional posterior of f(X∗)
is a multivariate normal distribution. Consequently, an estimate
for f(X∗) can be found by sampling from the joint posterior
of f(X∗) and yn in two steps: first, draw a sample of yn from
the truncated normal distribution in Equation (7) and, second,
given that value, draw a sample of f(X∗) from the multivariate
normal distribution in Equation (8).

The above method can be extended in a straightforward
manner to deal with cases of more than one censored measure-
ments. Assume there are nc censored measurements, with loca-
tions X(c) = [x(1), . . . , x(nc )]′ and imagined responses y(c) =
[y(1), . . . , y(nc )]′. Then the prior in Equation (6) becomes

π(y(c)) = N
(
μ1nc ,K

00(X(c),X(c))+ σ 2
ε Inc

)
· I(y(1) ≥ 100, . . . , y(nc ) ≥ 100

)
.

Given this prior, the posteriors in Equations (7) and (8)
still apply, the main difference being that the scalar terms are
replaced with their vector counterparts.

3.2. Imposing themonotonicity constraint

As mentioned in the Introduction, scaffold biodegradation fol-
lows some intrinsic monotonicity properties with respect to
time or certain process variable according to expert knowledge.
As shown in Fig. 3, each scaffold specimen yields only one
data point; the specimen is destroyed during the weight loss
measurement and is then discarded. In other words, the data
points on the observed biodegradation profile are obtained from
different specimens rather than from the same specimen over
time. As a result, it is possible that some later measurements are

Figure . Illustration of monotonicity constraints with respect to time.

smaller than earlier measurements (e.g., the second data point
in the lower part of Fig. 3) due to sample uncertainty among
scaffold specimens. Consequently, predictions violating the
intrinsicmonotonicitymay occur. Therefore, in practice, mono-
tonicity constraints are necessary in modeling and prediction of
the scaffold biodegradation data.

One advantage of adopting the GPmodeling approach is that
the derivative process of the GP is also a GP (Rasmussen and
Williams, 2006), thus making it convenient to impose mono-
tonicity constraints. Hereafter the two processes will be referred
to as the original GP and the derivative GP. For ease of under-
standing, we will first consider monotonicity with respect to a
single predictor and then generalize to both predictors.

Case I:Monotonicity with respect to a single predictor
Let us consider imposing monotonicity constraints with

respect to time. We first need to specify a set of locations, called
the constrained set, where monotonicity is required. Let X� =
[x�1 , x�2 , . . . , x�m]′ be the vector of m constrained locations and
f ′(X�) = [ f ′(x�1 ), f ′(x�2 ), . . . , f ′(x�m )]′ be the first derivatives
with respect to time at these locations. Thus, the monotonic-
ity constraints are f ′(x�1 ) ≥ 0, . . . , f ′(x�m ) ≥ 0, as illustrated in
Figure 6. Note that the locations in the constrained set do not
have to be the observed ones {x1, . . . ,xn}. The covariance of the
derivative GP and the covariance of the derivative GP and the
original GP are

K01(X,X�) = (
K01(xi, x�j ))n×m,where K

01(xi, x�j )
= 2σ 2

f Ri jθ1(xi1 − x�j1),

K10(X�,X) = (
K10(x�j , xi))m×n = (

K01(xi, x�j ))n×m,

K11(X�,X�) = (
K11(x�j , x�k ))m×m,

where
K11(x�j , x�k ) = 2σ 2

f R jkθ1
[
(1 − 2θ1

(
x�j1 − x�k1

)2]
, (9)

where K11(�, �) is the covariance function of the derivative GP,
and K01(�, �)/K10(�, �) is the covariance function of the original
GP and the derivative GP. In the above formulas, xi1, x�j1, and
x�k1 are the time values (among t1, . . . , tnt ) of locations xi, x�j ,
and x�k ; Rij is the correlation function defined in Equation (2)
between locations xi and x�j ; and θ1 is the scale parameter for
time in the correlation function. Derivations of Equation (9) are
provided in Appendix B.

Given the monotonicity constraints, the prior of f ′(X�) is

π(f ′(X�)) = N
(
0,K11(X�,X�)

) · I( f ′(x�1 ) ≥ 0, . . . , f ′(x�m) ≥ 0
)
.

(10)
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The joint posterior of f(X∗) and f ′(X�) can be derived in a
similar way as Proposition 1.

Proposition 2. Given the prior in Equation (9), the joint posterior
distribution of (f(X∗), f ′(X�)) is

P(f(X∗), f ′(X�)|y, ψ) = P(f(X∗)|f ′(X�), y, ψ) · P(f ′(X�)|y, ψ)

where

f ′(X�)|y, ψ ∼ N(m(X�),V(X�)) · I( f ′(x�1 ) ≥ 0, . . . , f ′(x�m) ≥ 0
)

(11)
f(X∗|f ′(X�), y, ψ ∼ N (m(X∗),V(X∗)) (12)

with

m(X�) = K10(X�,X)[σ 2
ε I + K00(X,X)]−1(y − μ1n),

V(X�) = K11(X�,X�)− K10(X�,X)
×[σ 2

ε I + K00(X,X)]−1K01(X,X�),
m(X∗) = μ1n∗ + A−1(AT

1 B
−1
1 (y − μ1n)+ B−1

2 A2f ′(X�))
V(X∗) = A−1.

In the above terms, the matrix A = AT
1 B

−1
1 A1 + B−1

2
with A1 = K00(X,X∗)[K00(X∗,X∗)]−1, A2 = K01(X∗,X�)
[K11(X�,X�)]−1, B1 = σ 2

ε I + K00(X,X)− K00(X,X∗)
[K00(X∗,X∗)]−1K00(X∗,X), and B2 = K00(X∗,X∗)−
K01(X∗,X�)[K11(X�,X�)]−1K10(X�,X∗). This result is
similar to Lemma 3.1 in the study of Wang (2012). It has a
similar interpretation as Proposition 1; that is, we can find
an estimate for f(X∗) by sampling from the joint posterior
of f(X∗) and f ′(X�): first, draw a sample of f ′(X�) from the
truncated multivariate normal distribution in Equation (11)
and, second, draw a sample of f(X∗) from the multivariate
normal distribution in Equation (12).

If the biodegradation increases monotonically as the process
variable z increases according to expert knowledge, monotonic-
ity constraints with respect to z need to be imposed. All of the
formulas will take the same form as above except that θ1 and
xi1−x�j1 are replaced by θ2 and xi2−x�j2, respectively, in Equa-
tion (9).

Case II: Monotonicity with respect to both predictors
When themonotonicity constraints are applicable for both of

the predictors, we can specify a general constrained set:

X� = [
x�1 , . . . , x

�
m1
, x�m1+1, . . . , x

�
m
]′
,

with their first derivatives being

f ′(X�) = [
f ′t (x�1 ) , . . . , f ′t (x�m1

)
, f ′z (x�m1+1

)
, . . . , f ′z (x�m)]′ ,

where f ′t (·) = ∂ f (·)/∂t , f ′z(·) = ∂ f (·)/∂z. The constraints to
impose are

f ′t(x�1 )>0, . . . , f ′t(x�m1

)
>0, f ′z(x�m1+1

)
>0, . . . , f ′z(x�m)>0.

That is, there are monotonicity constraints with respect to
time at m1 locations {x�1 , . . . , x�m1

} and those with respect to
the process variable atm–m1 locations {x�m1+1, . . . , x�m}, as illus-
trated in Figure 7.

In this case, Proposition 2 still applies, except that the
covariance functions—i.e., K01(X,X�) and K11(X�,X�) in

Figure . Illustration of monotonicity constraints with respect to both predictors.

Equations (11) and (12)—are replaced by

K10(X�,X) = [Kt0(X�I ,X) Kz0(X�II ,X) ],
K11(X�,X�) =

[
Ktt(X�I ,X�I ) Ktz(X�I ,X�II )
Kzt(X�II ,X�I ) Kzz(X�II ,X

�
II )

]
,

(13)

whereX�I = [x�1 , . . . , x�m1
]′,X�II = [x�m1+1, . . . , x�m]′, andX� =

[X�I ,X
�
II ]

′. In the superscripts of the terms at the right side, “0”
indicates the original GP, “t” indicates the first derivative with
respect to time, and “z” indicates the first derivative with respect
to the process variable. Specific formulas of the covariance func-
tions and derivations are given in Appendix B.

3.3. Imposing the bound constraint

Bound constraints may exist at one or several locations of a pre-
diction. Let us consider a general case where the predictions
must satisfy f (x∗

1 ) ∈ U1, . . . , f (x∗
n∗ ) ∈ Un∗ , with U1, . . . ,Un∗

being the bounds ofweight loss based on expert knowledge. This
equates to a prior for the predictions

π(f(X∗)) = N(0,K00(X∗,X∗)) · 1{ f (x∗
1 )∈U1,..., f (x∗

n∗ )∈Un∗ }. (14)

The resulting posterior of f(X∗) is given below.

Proposition 3. Given the prior in Equation (14), the posterior of
f(X∗) is

f(X∗)|y, ψ ∼ N(m(X∗),V(X∗)) · 1{ f (x∗
1 )∈U1,..., f (x∗

n∗ )∈Un∗ },
(15)

where the mean and variance–covariance matrices of the normal
distribution are as defined in Equation (8).

This result is natural based on the results in Propositions 1
and 2. To obtain samples of f(X∗), we need to draw from the
truncated multivariate normal distribution in Equation (15).

4. Model estimation and inference

Note that the posterior distributions in Propositions 1 to 3
are conditional on the parameters of the original GP model
ψ = [μ, θ, σ 2

f , σ
2
ε ], where μ is the mean, θ = [θ1, . . . , θd]′ are

parameters of the correlation function, σ 2
f is the process vari-

ance, and σ 2
ε is the random error variance. Thus, ψ needs to

be estimated from data to generate predictions. Basically, the
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implementation of the proposed CGP method involves two
steps: (i) estimation of ψ and (ii) prediction of f(X∗) given the
estimate of ψ. A fully Bayesian approach treats ψ as a random
vector like f(X∗) and conducts the two steps simultaneously by
finding the joint posterior of ψ and f(X∗). However, this creates
challenging issues; e.g., specifying priors for components of ψ
that are intrinsically correlated (Wang, 2012) and sampling of
the high-dimensional posterior. In this study, we adopt the idea
of empirical Bayesian methods (Robert, 2007) and use theMax-
imum Likelihood Estimate (MLE) of ψ. Then we predict f(X∗)
by sampling from its conditional posterior given the MLE of ψ.
Details of the two steps are given in this section. Some other
related issues will also be discussed.

4.1. Parameter estimation

A commonly used method to find the MLE of ψ will now be
briefly described (Ranjan et al., 2011). Defining δ = σ 2

ε /σ
2
f , the

closed form of the MLEs of μ and σ 2
f given θ and δ is

μ̂(θ, δ) = [
1Tn (R(X,X)+ δIn)−11n

]−11Tn (R(X,X)+ δIn)−1y,

σ̂ 2
f (θ, δ) = (y − μ̂(θ, δ)1n)T (R(X,X)+ δIn)−1(y − μ̂(θ, δ)1n)

n
;

that is, the MLEs of μ and σ 2
f are functions of other parameters

(i.e., θ and δ). Consequently, the MLEs of θ and δ can be found
by minimizing the negative profile log-likelihood:

−2 log L ∝ log |R(X,X)+ δIn| + n log
[
(y − 1nμ̂(θ, δ))T

×(R(X,X)+ δI)−1](y − 1nμ̂(θ, δ)),

where |•| is the determinant of a matrix. To address possible
issues with bumpy likelihood surface near boundaries of the
parameter space, a new parameterization for θ (Butler et al.,
2014) can be used:

ωw = log10(θw)w = 1, . . . , d.

With this parameterization, peaks and dips of the likelihood
surface will appear in the middle of the parameter space to facil-
itate a thorough search for the MLEs of θ and δ.

4.2. Posterior sampling

Sampling from the posteriors given in Propositions 1 to 3 is chal-
lenging, due to their high dimension and need for truncation.
We propose the following strategy for the posterior sampling,
it integrates random generators built-in software (e.g., Matlab)
and Markov Chain Monte Carlo (MCMC) algorithms (Robert
and Casella, 2004):

� The posterior of yn in Equation (7), which is a truncated
univariate normal distribution, can be sampled simply by
drawing from the normal distribution and discarding sam-
ples that do not satisfy the constraint. Alternatively, to
enhance the efficiency of sampling, we can use popular
MCMC algorithms that directly draw from nonstandard
distributions, such as truncated normal. One good choice
is the slice sampler (Neal, 2003), which is both powerful

and convenient to use, as it only needs the posterior to be
sampled from and a set of casually picked initial values as
inputs.

� The posterior of f ′(X�) in Equation (11), a truncatedmul-
tivariate normal distribution, is more complex to sample.
In this case, generating all elements of f ′(X�) simultane-
ously from the distribution has many issues, including the
inefficiency in multivariate truncation. A better method is
the Gibbs sampler that generates each element of f ′(X�)—
i.e., f ′t (x�1 ), . . . , f ′z(x�m )—separately from its conditional
posterior given other elements (Gelfand et al., 1992). This
method will be used in this study for all samplings from
truncated multivariate normal distributions.

� The posteriors of f(X∗) in Equations (8) and (12) are
multivariate normal distributions, which can be sam-
pled using software. The posterior of f(X∗) in Equa-
tion (15) is a truncated multivariate distribution,
which will be sampled using the abovementioned
Gibbs sampler. Note that in calculating the variance
matrix V(X∗) in these equations, a simplification based
on the Sherman–Morrison–Woodbury formula—i.e.,
A−1 = B2 − B2AT

1 (B1 + A1B2AT
1 )

−1A1B2—can be used
for faster and more stable computation.

We now present a short note on the order of sampling when
multiple types of constraints are imposed:Whenever the censor-
ing constraint is considered, the sampling of yn in Equation (7)
should be performed first; whenever the bound constraint is
considered, the sampling of f(X∗) in Equation (15) should be
done last. Detailed procedures of the posterior sampling in each
case are summarized in Appendix C.

4.3. Identifying the constrained set

When imposing monotonicity constraints, we need to specify
the constrained set {x�1 , . . . , x�m}. A straightforward method is
to use manual techniques to identify a set of locations where
the data exhibit a violating trend, but this may miss some
locations that should be constrained. Alternatively, one can
use all of the training and prediction locations; however, this
may include many unnecessary locations. Problems may occur
in model estimation and prediction due to the inverse of the
covariance matrix of GP becoming more difficult to compute
as more locations and/or more nearby locations are involved.
Wang (2012) proposes a rigorous procedure to decide the
minimal constrained set, which is useful when large samples
exist and/or locations are densely distributed. In studies of
scaffold biodegradation, limited data are typically available and
locations are distributed in a sparse pattern, so we now provide
a simplified, easy-to-implement procedure to find a reasonable
constrained set with a small number of locations (assuming that
the predictions are required to be monotonically increasing).

Step 1: Manually identify a set of candidate locations
{xc1, xc2, . . .} among the training locations. To be conserva-
tive, we can just use the whole training set as the candidate set.

Step 2: For each location xc in the candidate set, since the
posterior of the first-derivative at this location is a normal
distribution—i.e., f ′(sc)|y, ψ ∼ N(m(xc),V (xc)), according to
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Equation (11)—we can find the probability of negative first-
derivative at this location:

pNeg = P( f ′(xc) < 0|y, ψ) = �

(
− m(xc)√

V (xc)

)
. (16)

Location(s) with a large pNeg should be constrained.

Step 3: Tomake sure the predictions at given locationsX∗ satisfy
the monotonicity requirement: those locations should also be
constrained. This leads to a constrained set as follows:

X� = arg
xc∈{xc1,xc2,...}

[pNeg(xc) ≥ 0.5] ∪ {x∗
1, . . . , x

∗
n∗ }.

4.4. Estimating the full degradation time

In the case with full degradation censoring in Section 3.1, scaf-
fold researchers are interested in the full degradation time, which
is the time point when full degradation is reached. Let the full
degradation time under the process setting that yields the cen-
sored data (i.e., z = znz in Fig. 5) be tF. An estimate of this time
can be obtained as a by-product of the prediction. Based on
Equations (8), (12), and (15), for any x∗ = [t, znz ]′, f(x∗)|• ∼
N(m(x∗),V(x∗)), where “•” is the conditioning set in those equa-
tions. Thus, the probability of full degradation at x∗ is

pFull (x∗) = P( f (x∗) ≥ 100|·) = 1 −�

(
100 − m(x∗)√

V (x∗)

)
,

(17)
where� is the cumulative distribution function of the standard
normal distribution. Based on this result, we can define the esti-
mate of the full degradation time as

t̂F = arg
t1<t<tnt

[pFull (x∗) = 0.5] = arg
t1<t<tnt

[E(( f (x∗)) = 100].

(18)
Here this estimate has two interpretations: as the time point

with a 50% chance of full degradation or as the time point where
the expected weight loss is 100%. Since f(x∗)|• follows a normal
distribution, which is symmetric, these two are equivalent. Note
that the percentage “50%” in the first definition can be replaced
by a higher value—e.g., 60% or 80%—depending on the con-
cern/preference in the specific application.

5. Case study

In this study, the proposedCGPmethod is applied to data from a
novel tissue-engineering scaffold fabrication process (Yang et al.,
2004; Dey et al., 2008). This process uses a new class of biomate-
rials called Crosslinked Urethaned-doped Polyester Elastomers
(CUPEs) to fabricate scaffolds.Unlike conventional biomaterials
that are either stiff and incompliant or soft but weak, CUPEs are
fully elastic and sufficiently strong, making them potential scaf-
fold materials to develop soft tissues such as cardiac tissues and
blood vessels. Figure 8 displays a data set from the process, with
scaffold weight loss percentages (y) under different settings of a
critical process variable (z), the percentage of Polyethylene glycol
(PEG) in scaffoldmaterial synthesis. Figures 8(a) to 8(c) contain
three streams of data under z = 75, 25, and 0%, which will be
used to demonstrate the proposed method in one-dimensional
cases. Figure 8(d) contains data at t= 3, 7, 14, 21, 28 days under
z = 0, 25, 30, 40, 50, 60, and 75%, which will be used to demon-
strate the application in a two-dimensional case. Each data point
in the figures is the average of five replicates.

Section 5.1 reports results of CGP prediction with each of the
three types of constraints described in Sections 3.1 to 3.3 using
the three one-dimensional data streams in Figures 8(a) to 8(c).
It should be noted that the one-dimensional case often occurs
in practice, which involves prediction under an interested
setting of process variables. Here these data streams are used
to illustrate how to impose the constraints. Section 5.2 shows
prediction results on the two-dimensional data in Figure 8(d).
We first demonstrate the use and performance of CGP at
unsampled time points and/or settings of the process variable
(Section 5.2.1). Then a comparative study ofCGP,GP, andANNs
is conducted through leave-one-out cross-validation to identify
the advantages of CGP over other methods (Section 5.2.2). In
the posterior sampling for each prediction, 20 000 samples are
generated using Matlab functions with 2000 burn-ins.

5.1. One-dimensional prediction

The data in Figure 8(a) contain a censoring measurement (at
t = 42 days) and thus will be used to demonstrate prediction
using the censoring constraint. The data in Figure 8(b) have an
“abnormal” measurement (at t = 14 days), which may lead to
predictions violating the monotonicity requirement and thus

Figure . Degradation measurements used in the case study: (a) one-dimensional data with z = %, (b) one-dimensional data with z = %, (c) one-dimensional data
with z= %, and (d) two-dimensional data.
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Figure . One-dimensional case in Figure (a): (a) predictions and (b) full-degradation probability.

will be used to demonstrate prediction with the monotonicity
constraint. The data in Figure 8(c) will be used to demonstrate
the case using the bound constraint. Procedures and results of
the predictions are given as follows.

Let us first consider the case in Figure 8(a). Predictions are
made at t = 5, 8, 10, 15, 20, 25, 30, 32, 35, 38, 40 days using
two methods: the (unconstrained) GP based on all the mea-
surements (i.e., y6 = 100%) and the proposed constrained GP
with a censoring constraint at t = 42 days. Figure 9(a) shows
the resulting predictions. We can see that the two methods yield
similar predictions during the uncensored period (3–28 days),
whereas their behaviors during the censored period (28–42
days) are clearly different. Specifically, the predictions from the
CGP are accurate and adequate, which implies that full degrada-
tion occurred before the last time point (i.e., 42 days). The 95%
confidence bands of the constrained prediction are narrow dur-
ing the uncensored period and become wider after that, reflect-
ing the increase of uncertainty as time proceeds. In contrast,
the predictions from the unconstrained GP show a linear trend
toward 100% in this period, which is expected since the cen-
sored measurement “100%” was used directly in this method.
These results validate the importance of considering the censor-
ing information in order to make meaningful predictions.

We can also obtain the full degradation probability, pFull
in Equation (17), from the two methods for comparison.

Figure 9(b) shows their estimates of the full degradation proba-
bility at t= 4, 5, . . . , 45 days. Again, the proposed CGPmethod
yields reasonable results, with pFull(42) = 0.86, which is consis-
tent with reality (i.e., the censoring observed at this time point).
Since pFull(38) = 0.46 and pFull(39) = 0.57, a simple estimate of
the full degradation time is 38.5 days based on the definition in
Equation (18). The unconstrained results appear unreasonable,
where the estimated probability of full degradation at 42 days
is relatively small (around 50%), though censoring was actually
observed. This suggests that imposing the censoring constraint
makes sense not only tomake predictions but also tomake other
inferences on scaffold degradation.

In the case of Figure 8(b), the weight loss measurement
at t= 14 days (y3 = 24.7%) appears “abnormal,” which is slightly
smaller than themeasurement at t= 7 days (y2 = 25.0%). Before
applying the proposedmethod, the unconstrained GP is tried to
see if there is a need to impose monotonicity constraints. First,
theMLEs of the GP parameters are obtained: μ̂ = 25.4921, θ̂ =
0.2658, σ̂z = 10.3558, σ̂ε = 6.3509. Then prediction of weight
loss is made at t= 5, 8, 10, 12, 15, 17, 20, 22, 25 days. The results,
as shown in Figure 10(a), exhibit an increasing trend, indicating
that the unconstrained GP yields reasonable predictions.

To further understand the data, we calculate the probability
of negative first-derivative—i.e., pNeg in Equation (16)—during
the observed period (3–28 days), which is shown in Figure 10(b).

Figure . One-dimensional case in Figure (b): (a) predictions and (b) probability of negative derivative.
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Figure . Prediction in the one-dimensional case in Figure (c).

All of the probabilities are small (<0.5), meaning that mono-
tonicity constraints are probably not needed. One explanation
is that despite the mild outlier at t = 14 days, the whole data set
has an increasing trend overall. In this case, due to the smooth-
ing effect of the random error in the GP model, the predictions
will follow the overall trend of data and will not be significantly
affected by the outlier.

In the case of Figure 8(c), theMLEs of the GP parameters are
μ̂ = 5.8871, θ̂ = 0.1244, σ̂z = 9.0483, σ̂ε = 0.9289. We com-
pare predictions at t= 1, 5, 8, 10, 12, 15, 17, 20, 22, 25 days using
the unconstrainedGP and the proposed CGPwith a bound con-
straint “f(t)>0” at t = 1 day. Note that t = 1 day is not in the
observed time range, so the prediction at this time point is an
extrapolation. According to the results shown in Figure 11, the
unconstrained prediction at t= 1 day is negative (−0.4%),which
is not meaningful. Such problems are expected for extrapola-
tions. In contrast, the constrained prediction at this time point is
positive (0.58%) and the 95% confidence bands are also positive.

5.2. Two-dimensional prediction

... Prediction using the proposed CGP
Now we apply the CGP method to the two-dimensional data
set in Figure 8(d) to demonstrate its use and performance in a
general multi-dimensional case. Unlike in the one-dimensional
case, where the three types of constraints are imposed separately,
here we will focus on the monotonicity constraints and bound
constraints, and all constraints will be imposed simultaneously
when needed. In addition, we assume that the degradation is
monotonically increasing with respect to both time and the
process variable based on expert knowledge. We will consider
the two situations of prediction mentioned in Section 2.2; i.e.,
interpolations where a prediction is made within the observed
data region and extrapolations where a prediction is made
out of the region. It is well known that the latter situation is
challenging in general, and the unconstrained GP tends not to
work well in this situation, due to its flexibility.

We first predict weight loss at the observed time points (i.e.,
t = 3, 7, 14, 21, 28 days) under three new settings of the process
variable: z = 15, 32, and 70%, which represent the situation
of interpolations. Noticing the “abnormal” data point in the
dataset (t = 14 days, z = 30%), monotonicity is our concern
here. In the first step, the MLEs of the GP parameters are
found: μ̂ = 23.6849, θ̂1 = 0.4451, θ̂2 = 1.8604, σ̂z = 29.3117,
σ̂ε = 2.3743. Then, we check the probability of a negative first

derivative with respect to time and the process variable to see
if there is a need to impose constraints. The results are shown
in Figures 12(a) and 12(b), respectively. In Figure 12(a), the
probability is close to zero everywhere within the data region,
except for the small neighborhood around the abnormal data
point; but even in that neighborhood, the peak is lower than 0.2.
This means that the predictions will probably satisfy the mono-
tonicity with respect to t automatically and thus constraints
are not needed. The probability of a negative first derivative
in Figure 12(b) shows similar patterns, which is near zero in
most part of the data region, with small values in the margins,
meaning that once again monotonicity constraints with respect
to z are not needed. Therefore, the unconstrained GP is used in
the prediction. The results are shown in Figure 12(c), which are
all meaningful, as predicted by the probabilities of a negative
first derivative in Figures 12(a) and 12(b). In particular, it seems
that the predictions under z = 32% are not affected by the
abnormal data point under z = 30%.

For extrapolations, two cases are considered. In the first case,
we focus on predicting weight loss at some unobserved time
points, t = 30, 35, 40, 42 days under z = 75%. According to
Figure 12(a), the probability of negative first derivative at the last
observed time point (i.e., t = 28 days) is rather high, especially
under z = 75%. Thus, monotonicity constraints with respect
to time are imposed at all the time points to be predicted. The
CGP predictions are given in Figure 13(a), and the correspond-
ing unconstrained predictions are also given in the figure for
comparison. Clearly, the constraints are necessary to produce
meaningful predictions. It should be pointed out that the pre-
dicted weight loss at t = 42 days under z = 75% is 100%—i.e.,
full degradation is reached—which is consistent with the actual
measurement under this setting of z as shown in Figure 8(a). In
the second case, we predict weight loss under two unobserved
settings of the process variable, z = 80% and 90%. As implied
by Figure 12(b), the probability of negative first derivative tends
to becoming high around z = 75%, so monotonicity constraints
with respect to z are imposed at the locations to predict. The
results of CGP and unconstrained GP are given in Figure 13(b).
The unconstrained predictions are, again, not meaningful: val-
ues under z = 90% are lower than those under z = 80% at some
time points, and they are similar to the observations under z =
75%. These results suggest that the CGP method is particularly
useful in extrapolations to enable meaningful predictions.

... Comparative study
To further understand the advantages of the CGP method,
we compare its prediction performance with the two pop-
ular surrogate models mentioned in the Introduction; i.e.,
the unconstrained GP and ANNs, using data in Figure 8(d).
Specifically, two powerful ANN methods are considered, the
Feed-forwardNeuralNetwork (FNN) and the Radial-basisNeu-
ral Network (RNN). There are two key parameters of the ANN
methods: the number of neurons (#neurons) in FNN and the
upper bound of mean-squared error in training (trainMSE) for
RNN. In this study, these parameters are tuned by considering
different settings of them (#neurons= 3–20, trainMSE= 8–40),
and the settings that lead to the best prediction performance are
chosen.
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Figure . Prediction in the two-dimensional case in Figure (d): (a) probability of negative first-derivative with respect to t; (b) probability of negative first-derivative with
respect to z; and (c) interpolations under new settings of z= , , and %.

To assess the prediction performance of the methods, we
adopt the leave-one-out cross-validation method with respect
to values of the process variable (i.e., z = 0, 25, 30, 40, 50, 60,
75%). Specifically, for each value of z, data under other values are
used for model training, and data under this value are used for
weight loss prediction at the five observed time points (i.e., t =
3, 7, 14, 21, 28 days). Note that the predictions under z= 0% and
z = 75% are extrapolations, whereas those under other values of
z are interpolations. The performances of the four methods in
these two situations will now be discussed.

The predictions in interpolations (i.e., z = 25, 30, 40, 50,
and 60%) are shown in Figure 14, and the corresponding Root-
Mean-Squared Prediction Errors (RMSPEs) are summarized in
Table 1. In these cases, the predictions from the unconstrained
GP are meaningful (i.e., monotonically increasing with time),
so constraints are not needed; in other words, the CGP will pro-
duce the same results as the GP, as shown in Figure 14. In terms
of prediction accuracy, the GP and CGPmethods perform quite
well: better than FNN and RNN in the cases of z = 20, 40, and
60, as shown in Table 1. In terms of prediction validity, both GP

Figure . Prediction in the two-dimensional case in Figure (d): (a) extrapolations at new time points t= , , ,  days and (b) extrapolations under new settings of
z= %, %.
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Figure . Leave-one-out predictions of the four methods in interpolations.

andCGP givemeaningful predictions, whereas the FNNpredic-
tions violate monotonicity in three cases (z = 0, 30, and 40%),
and the RNN predictions violate in two cases (z = 0, 75%). In
summary, as we have seen in Section 5.2.1, both GP and CGP
give promising prediction performance in interpolations.

The prediction results in extrapolations (i.e., z = 0%, 75%)
are given in Figure 15 and the corresponding RMSPEs are sum-
marized in Table 1. One can see that constraints are not active
for the CGPmethod under z= 75%, leading to the same perfor-
mance for bothGP andCGP. The results under z= 0% are inter-
esting, where the fourmethods performdramatically differently.
In fact, prediction in this case is very challenging, due to the lack
of training data around z = 0% (the closest are those under z =
25%). The proposed CGP used in this case imposes bound con-
straints “f(t) > 0” and monotonicity constraints with respect to
time at all of the locations to predict. In terms of prediction accu-
racy, the CGP gives the best prediction accuracy and substan-
tially outperforms the GP, FNN, and RNNmethods. In terms of
prediction validity, only the CGP predictions are always mean-
ingful; the GP gives negative prediction values at the beginning
time points, whereas the two neural networks produce negative
prediction at some time points and are not monotonically
increasing. These results suggest, again, that the proposed CGP
is especially useful in extrapolations to provide meaningful pre-
dictions. Moreover, it can also improve the prediction accuracy.

6. Numerical study

To further investigate the properties of the proposed CGP
method, we conduct two simulation studies by generating new
data sets through slightly modifying the original data sets used
in Section 5. Since the CGP’s advantages on extrapolations were
demonstrated in the case study, here wewill create cases of inter-
polations where themonotonicity is violated and imposing con-
straints are necessary.

Table . RMSPEs of the four methods.

Methods % % % % % % % Average

GP . . . . . . . .
CGP 1.9 2.0 . 1.4 . 4.8 6.0 3.4
FNN . . . . . . . .
RNN . . 3.6 . 3.1 . . .

Note: The smallest value under each setting of the process variable is printed in bold.

6.1. One-dimensional example

In the one-dimensional data in Figure 8(b), we have noted the
abnormal data point at t = 14 days and found that since it does
not affect the overall monotonic trend of data, constraints are
not needed, as shown in Figure 10. Now we replace this data
point with a smaller value (e.g., 10%), while keeping the other
data points at their original values. The new data set is shown
in Figure 16(a), where the modified data point appears to be a
serious outlier and has decisive influence on the overall trend of
the data. As a result, the probability of a negative first deriva-
tive given in Figure 16(b) becomes very different from that in
Figure 10(b), with large values at some time points—e.g., t =
11, 12 days—indicating that monotonicity constraints must be
imposed. This is validated by the unconstrained GP predictions
given in Figure 16(a), which exhibits a dramatically downward
trend around the modified data point.

To apply the CGP method, a constrained set is identified
following the procedure in Section 4.3. The set is found to be
{3, 5, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 21, 22, 23, 24, 25, 28}
days, at each of which a monotonicity constraint is imposed.
The resulting predictions are shown in Figure 16(a); they
have an increasing trend and seem not to be affected much by
the outlier. Another interesting result is that the 95% confidence
bands of the CGP is much narrower than the 95% confidence
bands of the unconstrained GP, which indicates a lower level of
uncertainty. These results suggest that the CGP will be useful in
interpolations when the data set contains influential outliers.

6.2. Two-dimensional example

The two-dimensional data in Figure 8(d) are similarly modified
by replacing the third data point (at t = 14 days) under each
setting of z with a value that is a little smaller than the second
data point (at t = 7 days). Figure 17(a) shows the new data set,
where the modified data points substantially change the overall
trend of data. The probability of a negative first derivative
with respect to time, shown in Figure 17(b), now looks very
different from the one in Figure 12(a). In particular, a high peak
can be observed around 0.9, in the neighborhood of the third
data point for all values of z. Thus, unlike in Figure 12(c), the
unconstrained predictions under z= 15, 32, and 70% violate the
monotonicity. In contrast, when monotonicity constraints on
related locations are imposed, the predictions become mono-
tonic as shown in Figure 17(a). This validates what we found
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Figure . Leave-one-out predictions of the four methods in extrapolations.

in the one-dimensional examples; i.e., the CGP must be used
to produce meaningful predictions when substantial outliers
exist.

A simulation following the similar strategy of data generation
is also conducted to find the advantage of the CGP on prediction
accuracy in cases containing outliers. In the simulation, the data
point at t= 14 days is set to be proportional to that at t= 7 days
under the same setting of z; i.e., y3/y2 = r, where 0< r � 1 is an

outlying factor, a smaller value of which indicates more serious
outlying level of the data set. Values of r = 1, 0.95, 0.9, 0.85 are
considered, and given each of these values, the RMSPEs of GP
and CGP in leave-one-out cross-validation (as reported in Sec-
tion 5.2.2) are found. The results under z = 25% and 60% are
given in Figure 18. The benefit of CGP in prediction accuracy
is clear, which increases approximately linearly as the outlying
level increases (i.e., r gets smaller).

Figure . One-dimensional example: (a) data and predictions and (b) probability of negative first-derivative.

Figure . Two-dimensional example: (a) data and predictions and (b) probability of a negative first-derivative.
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Figure . Prediction errors under different outlying levels of themodified data set.

7. Discussion and conclusions

The prediction of biodegradation is a key problem in tissue-
engineering scaffold fabrication. This study proposes a CGP
method to solve this problem, which is able to incorporate
various types of expert knowledge, such as full degradation
censoring, monotonicity, and bounds requirements in the pre-
diction. According to the presented case study, the CGPmethod
can yield meaningful and more accurate predictions when the
regular GP fails, and it performs better than popular ANN
methods. In particular, it shows a promising performance in
extrapolations, as well as interpolations with influential outliers,
where prediction is usually very difficult.

Another interesting and useful finding that deserves note is
that the random error ε has an effect on the prediction when
monotonicity constraints are imposed. Some researchers point
out that including random error in the GPmodel may introduce
unnecessary over-smoothing and thusmake efforts to minimize
over-smoothing (Ranjan et al., 2011). However, this is true only
in contexts with intrinsically deterministic responses, such as
computer experiments, and the purpose of having the random
error in the model is mainly to solve computational issues
related to ill-conditioned matrices in the likelihood function.
Our application is a different case, one where the random error
is used to characterize the substantial randomness contained in
scaffold biodegradation measurements. In fact, the smoothing
effect of the random error may even be beneficial, in that
it enables the predictions from the GP model to satisfy the
monotonicity requirement automatically. The case study shows
such examples (Figs. 10 and 12) where the predictions from
the unconstrained GP are satisfactory and thus monotonicity
constraints are not needed.

Due to the flexibility of GP and the wide existence of
expert knowledge as considered in this study, the proposed
CGP method can be useful in many applications. In our future
research, we will extend the currentmethodology to handle spe-
cial problems in practice. Three possible directions of study are
as follows. First, in the current study, we assume that there are
an equal number of measurements under each setting of the
process variable and there are no missing data. Given the diffi-
culty experienced in measuring biodegradation in scaffold fab-
rication as mentioned in the Introduction, unbalanced design
and/or missing data are likely to exist. We will modify the pro-
posed method to cover such situations. Second, the GP model
used in the current work is an ordinary version of a GP with a

constant mean (i.e., μ in Equation (1)). In the universal version
of GP, themean part takes amore complicated form, usually as a
function of the predictors. A natural question is how to incorpo-
rate those constraints in this case. One idea is that we canmodel
the mean part using shape-constrained splines. Finally, we will
also extend the current framework to impose other types of con-
straints in scaffold fabrication and other biomanufacturing or
manufacturing applications.
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Appendix A: Proof of Proposition 1.

The following is a well-known result onmultivariate normal dis-
tribution that will be used in the proof: given two vectorsX1 and
X2 following a multivariate normal distribution:[

X1
X2

]
∼ N

([
μ1
μ2

]
,

[
�11 �12
�21 �22

])
,

then X2 given X1 = x follows a normal distribution with

E(X2|X1 = x) = μ2 + �21�
−1
11 (x − μ1)

cov(X2|X1 = x) = �22 −�21�
−1
11 �12 (A1)

From the GP model in Equation (1):[
y(n−1)

yn

]
∼ N

([
μ1n−1
μ

]
,

×
[
K00(X(n−1),X(n−1))+ σ 2

ε In−1 K00(X(n−1), xn)
K00(xn,X(n−1)) σ 2

f + σ 2
ε

])
.

Plugging in the terms in the above into Equation (A1) leads
tom(xn) andV (xn) in Equation (7). Considering the constraint
yn ≥ 100, the truncated normal distribution in Equation (7)
will be obtained. Similarly, according to the joint distribution
of f(X∗) and y:[

y
f(X∗)

]
∼ N

([
μ1n
μ1n∗

]
,

[
K00(X,X)+ σ 2

ε In K00(X,X∗)
K00(X∗,X) K00(X∗,X∗)

])
,

and thusm(X∗) andV(X∗) in Equation (7) will be obtained.
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Appendix B: Derivation of Equations (9) and (13)

Based on the definitions in Rasmussen andWilliams (2006), we
can find the covariance of the derivative GP and the covariance
of the derivative GP and the original GP:

Case I: Monotonicity with respect to t (Equation (9))

K01(xi, x�j ) = cov
(
f (xi), f ′(x�j )) = ∂cov

(
f (xi), f

(
x�j
))

∂t
= σ 2

f Ri j · 2θ1
(
xi1 − x�j1

)
,

K10(x�j , xi) = cov
(
f ′(x�j ), f (xi)) = ∂cov

(
f
(
x�j
)
, f (xi)

)
∂t

= σ 2
f Ri j · 2θ1

(
xi1 − x�j1

)
,

K11(x�j , x�k ) = cov
(
f ′(x�j ), f ′(x�k )) = ∂2cov

(
f (x�j ), f

(
x�k
))

∂t2

= σ 2
f R jk · 2θ1

[
(1 − 2θ1

(
x�j1 − x�k1

)2]
.

Case II: Monotonicity with respect to both t and z
(Equation (13))

K0t(xi, x�j ) = Kt0(x�j , xi)[6pt] = cov

[
f (xi),

∂ f
(
x�j
)

∂t

]

= ∂cov[ f (xi), f
(
x�j
)
]

∂t

=
∂

[
σ 2
f e

−θ1
(
xi1−x�j1

)2
−θ2
(
xi2−x�j2

)2]
∂t

= 2σ 2
f Ri jθ1

(
xi1 − x�j1

)
,

K0z(xi, x�j ) = Kz0(x�j , xi) = cov

[
f
(
xi
)
,
∂ f
(
x�j
)

∂z

]

= ∂cov[ f
(
xi
)
, f
(
x�j
)
]

∂z

=
∂

[
σ 2
f e

−θ1
(
xi1−x�j1

)2
−θ2
(
xi2−x�j2

)2]
∂z

= 2σ 2
f Ri jθ2

(
xi2 − x�j2

)
,

Ktt(x�j , x�k ) = cov

[
∂ f
(
x�j
)

∂t
,
∂ f
(
x�k
)

∂t

]
=
∂2cov

[
f
(
x�j
)
, f
(
x�k
)]

∂t2

=
∂2
[
σ 2
f e

−θ1
(
x�j1−x�k1

)2
−θ2
(
x�j2−x�k2

)2]
∂t2

= 2σ 2
f R jkθ1

[
1 − 2θ1

(
x�j1 − x�k1

)2]
,

Ktz(x�j , x�k ) = cov

[
∂ f
(
x�j
)

∂t
,
∂ f
(
x�k
)

∂z

]
=
∂2cov

[
f
(
x�j
)
, f
(
x�k
)]

∂t∂z

=
∂2
[
σ 2
f e

−θ1
(
x�j1−x�k1

)2
−θ2
(
x�j2−x�k2

)2]
∂t∂z

= −4σ 2
f R jkθ1θ2

(
x�j1 − x�k1

)(
x�j2 − x�k2

)
,

Kzt(x�j , x�k ) = cov

[
∂ f
(
x�j
)

∂z
,
∂ f
(
x�k
)

∂t

]
=
∂2cov

[
f
(
x�j
)
, f
(
x�k
)]

∂z∂t

=
∂2
[
σ 2
f e

−θ1
(
x�j1−x�k1

)2
−θ2
(
x�j2−x�k2

)2]
∂z∂t

= −4σ 2
f R jkθ1θ2

(
x�j1 − x�k1

)(
x�j2 − x�k2

)
,

Kzz(x�j , x�k ) = cov

[
∂ f
(
x�j
)

∂z
,
∂ f
(
x�k
)

∂z

]
= ∂2cov[ f

(
x�j
)
, f
(
x�k
)
]

∂z2

=
∂2
[
σ 2
f e

−θ1
(
x�j1−x�k1

)2
−θ2
(
x�j2−x�k2

)2]
∂z2

= 2σ 2
f R jkθ2

[
1 − 2θ2

(
x�j2 − x�k2

)2]
.

Appendix C: Sampling procedures for the CGPmethod
described in Sections 3.1 to 3.3

Section .: Prediction with censoring constraint

Step 1: Find MLEs of the GP parameters ψ̂ using the method
described in Section 3.4.1.

Step 2: Draw y(b)n from Equation (7). If y(b)n <100, redraw the
sample until the constraint is satisfied.

Step 3: Given y(b)n , draw f(X∗)(b) from Equation (8).

Repeat Steps 2 and 3 to obtain a stream of the posterior sam-
ples {f(X∗)(b) : b = 1, 2, . . .}.

Section .: Prediction withmonotonicity constraint
The following is the conditional distribution of each variable in a
multivariate normal distribution, which is the basis for sampling
from a truncated multivariate normal distribution.

Let X = [X1, . . . ,Xm]′ ∼ N(μ,�), X− j is X excluding Xj, j
= 1, . . . ,m, then[

X− j

Xj

]
∼ N

([
μ− j

μ j

]
,

[
V(X− j) cov(X− j,Xj)

cov(Xj,X− j) V(Xj)

])
.

By Equation (A1), the conditional distribution of Xj is

Xj|X− j ∼ N(mj, v j),

where

mj = μ j + cov(Xj,X− j)[V(X− j)]−1(X− j − μ− j),

v j = V (Xj)− cov(Xj,X− j)[V (X− j)]−1cov(X− j,Xj).

Step 1: Find MLEs of the GP parameters ψ̂ using the method
described in Section 3.4.1.
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Step 2: Draw f ′(X�)(b)from Equation (11): for j = 1, . . . , m,
draw a sample from

f ′(x�j )(b)|f ′(X�− j
)(b−1)

, y, ψ̂ ∼ N
(
μ
(b−1)
j , v j

)
until f ′(x�j )(b) > 0,

where X�− j is X� excluding x�j , f ′(X�− j)
(b−1) =

[ f ′(x�1 )(b), . . . , f ′(x�j−1)
(b), f ′(x�j+1)

(b−1), . . . , f ′(x�m )(b−1)]′,
and the parameters of the univariate normal distribution are

μ
(b−1)
j = m(x�j )+�(x�j ,X

�
− j)�

−1(X�− j,X
�
− j
)

×(f ′(X�− j
)(b−1) − m

(
X�− j

)
),

v j = �
(
x�j , x

�
j
)−�

(
x�j ,X

�
− j
)
�−1(X�− j,X

�
− j
)
�
(
X�− j, x

�
j
)
,

where m(x�j ) is the jth element of m(X�) in Equation (11),
m(X�− j) is m(x�) excluding the jth element, �(x�j , x�j ) is the
(j, j)th element of V(X�) in Equation (10), �(x�j ,X�− j) is the
jth row of V(X�) excluding the entry from the jth column,
�(X�− j,X�− j) is V(X�) excluding the jth row and jth column,

and�(X�− j, x�j ) is the jth column ofV(X�) excluding the entry
from the jth row.
Step 3: Givenf ′(X�)(b), draw f(X∗)(b) from Equation (12).

Repeat Steps 2 and 3 to obtain a stream of posterior samples
{f(X∗)(b) : b = 1, 2, . . .}.

Section .: Prediction with bound constraint
The sampling involves drawing from a truncated multivariate
normal distribution (Equation (15)). This will be done following
the method in Step 2 of Case II.

Step 1: Find MLEs of the GP parameters ψ̂ using the method
described in Section 3.4.1.

Step 2: Draw f(X∗)(b)from Equation (15) following Step 2 in
Case II, except that the generated samples are screened by the
bound constraints f (x∗

1 ) ∈ U1, . . . , f (x∗
n∗ ) ∈ Un∗ .

Repeat Step 2 to obtain a stream of posterior samples
{f(X∗)(b) : b = 1, 2, . . .}.
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